

Independence Plaza, Suite 950 • 1050 Seventeenth Street • Denver, CO 80265 • 303 628 7798 (main) • 303 389 4125 (fax)

November 9, 2001

VIA OVERNIGHT MAIL

Mr. William J. Sinclair Director, Division of Radiation Control Utah Department of Environmental Quality P.O. Box 144850 168 North 1950 West Salt Lake City, UT 84114-4850

Re: Update report regarding IUSA's October 4, 2000 report on investigation of elevated Chloroform Concentrations in Perched Groundwater at the White Mesa Uranium Mill. Utah Division of Water Quality Notice of Violation and Groundwater Corrective Action Order; Docket No. UGW20-01.

Dear Mr. Sinclair:

This transmits International Uranium (USA) Corporation's ("IUSA's") Contaminant Investigation report entitled <u>Update to Report - "Investigation of Elevated Chloroform</u> <u>Concentrations in Perched Groundwater at the White Mesa Uranium Mill near Blanding,</u> <u>Utah</u>". This report is an update to the Contaminant Investigation Report (the "CIR") that IUSA submitted to the Utah Department of Environmental Quality ("UDEQ") on October 4, 2000 (IUSA and HGC, 2000), and addresses questions raised by UDEQ's letter to IUSA in response to the CIR dated June 7, 2001. Items addressed in this report are also pursuant to a meeting between IUSA and UDEQ on October 5, 2001.

Please note that this report includes a recommendation for installing two additional temporary wells, for the purpose of additional delineation of the areas of the perched zone containing chloroform, and in the locations discussed during the meeting with UDEQ. IUSA would like to install these two additional wells during the week of

Mr. William J. Sinclair November 9, 2001 Page 2 of 2

December 3, 2001, so that the wells can be sampled during the first quarter 2002 sampling event. Should you have any questions or comments concerning this or any other part of this report, please contact me at 303.389.4131.

Sincerely,

marin RA

Michelle R. Rehmann Environmental Manager

cc/att: Larry Mize, UDEQ Division of Water Quality Loren Morton, UDEQ Division of Radiation Control Ron F. Hochstein, IUSA David C. Frydenlund, IUSA Harold R. Roberts, IUSA Richard E. Bartlett, IUSA Ron E. Berg, IUSA Stewart J. Smith, Hydro Geo Chem

UPDATE TO REPORT "INVESTIGATION OF ELEVATED CHLOROFORM CONCENTRATIONS IN PERCHED GROUNDWATER AT THE WHITE MESA URANIUM MILL NEAR BLANDING, UTAH"

Prepared By: INTERNATIONAL URANIUM (USA) CORPORATION Independence Plaza, Suite 950 1050 Seventeenth Street Denver, CO 80265

and

HYDRO GEO CHEM, INCORPORATED

51 West Wetmore Street, Suite 101 Tucson, AZ 85705

November 9, 2001

TABLE OF CONTENTS

1.	INTRODUCTION AND SUMMARY	3
2.	DNAPL ISSUES	5
2.1		
2.2		
2.3	Evaluation of the Potential for DNAPL to Exist in the Saturated Zone	7
	2.3.1 Detected Concentrations with Respect to Chloroform Solubility	
	2.3.2 Comparison of MW-4 to Nearby Temporary Wells	
	2.3.3 Vertical Profiling of MW-4 Brushy Basin Contact	. 11
2.4	Brushy Basin Contact	. 12
3.	ADDITIONAL PLUME DELINEATION	. 15
3.1	Analytical Results from Temporary Wells	. 15
3.2	Hydraulic Gradient in the Vicinity of MW-4	. 16
3.3	Need for Additional Wells to Delineate Chloroform in the Perched Zone	. 17
3.4	Temporal Trends in Chloroform Concentrations and Relationship to Nitrate	. 18
4.	COORDINATES REQUESTED BY UDEQ	. 20
5.	PERCHED ZONE PERMEABILITY	. 21
5.1	Permeability Distribution of the Perched Zone	. 21
5.2	Conglomeratic Zone Near MW-4	
6	ONGOING GROUNDWATER MONITORING AND REPORTING	. 23
7.	ADDITIONAL GROUNDWATER MONITORING PARAMETERS	. 25
7.1	Dichloromethane Analytical Results From Split Sampling	. 25
7.2	Direct Measurement of Redox Conditions in the Field	. 26
7.3	Feasibility of Enhancing Reductive Dechlorination In-Situ	. 26
8. RI	EFERENCES	. 28

FIGURES

1 Chloroform Analytical Results (µg\L) for Temporary Perched Wells	1	Chloroform Ana	lytical	Results	$(\mu g L)$	for Te	mporary P	'erched Wel	ls
--	---	----------------	---------	---------	-------------	--------	-----------	-------------	----

- 2 Contour Map of Top of Brushy Basin, White Mesa Uranium Mill Site
- 3 Water Level Contour Map December, 2000, White Mesa Uranium Mill Site
- 4 Water Level Contour Map September October, 2001 White Mesa Uranium Mill Site
- 5 Proposed Locations of New Temporary Perched Wells
- 6 Nitrate Analytical Results (mg\L) for Temporary Perched Wells
- 7 Scatterplot of Chloroform vs. Nitrate, Temporary Perched Wells and MW-4
- 8 Perched Zone Permeability Based on Pump and Slug Tests, and Constant Head Packer Tests, White Mesa Uranium Mill
- 9 Approximate Intervals of Conglomeratic Sandstone Logged in Temporary Well Borings

APPENDICES

A State of State

- А
- В
- С
- D
- Vertical Profile Sampling Bailer Use of Soil Gas to Detect DNAPL Coordinates Requested by UDEQ Analytical Results U.S.G.S Manual Chapter 6.5 and Hydrolab Parameter Specifications E

1. INTRODUCTION AND SUMMARY

International Uranium (USA) Corporation ("IUSA") submitted a Contaminant Investigation Report entitled "Investigation of Elevated Chloroform Concentrations in Perched Groundwater at the White Mesa Uranium Mill near Blanding, Utah" (the "CIR") to the Utah Department of Environmental Quality ("UDEQ") on October 4, 2000 (IUSA and HGC, 2000). This report has been prepared as an update to the CIR, and to address questions raised by UDEQ's letter to IUSA dated June 7, 2001 in response to the CIR. Items addressed in this report are also pursuant to a meeting between IUSA and UDEQ on October 5, 2001.

This report discusses analytical results to date, trends in chloroform concentrations in the vadose or perched water zones at the site, and additional delineation of the areas of the perched zone containing chloroform. This report also discusses the potential for degradation of chloroform in the perched water and the feasibility of enhancing in-situ reductive dechlorination of chloroform.

Important results of the investigation to date are that:

- 1. The data do not indicate that chloroform DNAPL exists at the site either in the vadose zone or the perched water zone.
- 2) The data do not indicate that a continuing chloroform source exists.
- 3) Data are consistent with the abandoned scale house leach field as the source for the MW-4 chloroform, and for the chloroform to have entered the perched water as a "slug" over a relatively short period of time (1-2 years).
- 4) Additional wells are needed to delineate the chloroform plume to the west and northwest of MW-4.

5) Rapid degradation of chloroform in the perched water is unlikely without enhancement.

Additional delineation of the chloroform in the perched water is proposed to be accomplished by adding two new temporary wells to the west and northwest of MW-4, and by vertical profile sampling in selected wells, to define the chloroform concentrations in three dimensions. Additional characterization of groundwater gradients in the northeast portion of the site, which have been changing and may affect chloroform migration in the perched water, will be accomplished by phased installation of piezometers. In addition, IUSA will continue to perform quarterly monitoring of chloroform and will transmit such data to the UDEQ in accordance with a schedule provided herein.

「「「「「「「「「」」」」

2. DNAPL ISSUES

UDEQ has expressed concern that dense, non-aqueous phase liquid (DNAPL) chloroform may exist in the vadose and perched water zones in the vicinity of MW-4 and the abandoned scale house leach field. This section uses existing soil gas and groundwater data from the site to demonstrate that DNAPL does not exist in either the vadose or perched water zones at the site, and that no evidence for continuing chloroform source exists.

2.1 Vertical Profiling of Existing Perched Wells

Initial sampling to evaluate the potential for stratification of chloroform concentrations was conducted in the fall of 1999, and reported in the CIR. As indicated in the CIR, multi-depth sampling of MW-4 was conducted during the week of September 27, 1999. Two samples were collected, one from the top of the water column (approximately 70-73 feet bls) and one from the base of the water column (approximately 117-120 feet bls). The shallow sample was collected first. Both samples were collected using disposable teflon bailers. Samples were collected without purging the well, to prevent disturbance of the water column.

Samples were collected in 40 ml VOA vials, with no headspace, capped, labeled, and stored in a cooler with blue ice at 4°C for shipment to the offsite analytical laboratory (Energy Laboratories, Casper, Wyoming). Chloroform was detected in the shallow sample at a concentration of 6,200 μ g/L, and in the deep sample at a concentration of 5,820 μ g/L. Because concentrations did not increase with depth, the presence of DNAPL (i.e., free chloroform product) was not indicated in MW-4.

S:\STAFF\MRR\ChloroformInvestigation\UpdateChloroformInvestigationReport 11_9_01

5

As UDEQ has requested further evaluation of the vertical distribution of chloroform concentrations, a Sampling Plan, with the Data Quality Objective of evaluating the potential for stratification of chloroform concentrations in the Chloroform Investigation wells, will be developed. This Sampling Plan will include the following key features:

- Procedure to collect samples from discrete depths using disposable bailers with double check values
- Requirements for field records
- Methodology for evaluation of results
- Evaluation of the feasibility of testing experimental USGS procedure using passive diffusion bags in at least one well, to provide comparison to conventional method results
- This sampling will take place in the first quarter of 2002

Appendix A contains manufacturer specifications for disposable bailer designed to collect samples from discrete intervals in groundwater.

2.2 Potential for DNAPL to Exist in the Vadose Zone

Soil gas sampling is a useful means to detect the presence of pure phase volatile organic compounds (VOC) that reside in the vadose zone. This applies to chloroform, which has a vapor pressure of 160 mm Hg. As discussed in Appendix B, soil gas concentrations in excess of 10% of a VOC pure phase saturated vapor pressure are indicative of the presence of the pure phase. For chloroform, soil gas concentrations in excess of 100,000 μ g/L would be indicative of pure phase.

The possibility that residual pure phase chloroform exists as a DNAPL within the vadose

zone beneath the abandoned scale house leach field is not supported by the trace level soil gas chloroform concentrations measured in the vicinity in 1999 (<1 μ g/L). The measured concentrations are indicative of low concentrations of chloroform dissolved in vadose pore waters. Furthermore, the possibility that DNAPL exists within the perched zone is not supported by the relatively low chloroform concentrations detected at wells TW4-5 and TW4-9, which are the temporary wells located closest to the leach field (Figure 1).

2.3 Evaluation of the Potential for DNAPL to Exist in the Saturated Zone

The possibility that chloroform DNAPL may exist in the perched zone beneath the abandoned scale house leach field and/or may traveled downgradient along the Brushy Basin contact toward MW-4 is remote. This possibility is not supported by data collected from the temporary perched wells at the site or from MW-4.

2.3.1 Detected Concentrations with Respect to Chloroform Solubility

Perched water chloroform concentrations exceeding 1% of the solubility of chloroform (8,000-10,000 mg/l) would have to exist to indicate the presence of DNAPL (Cohen and Mercer, 1993). The highest groundwater concentrations detected at the site (<7 mg/L) are more than 3 orders of magnitude lower than the solubility of chloroform. While the solubility of chloroform in the perched water may be slightly depressed by the presence of trace concentrations of carbon tetrachloride (500 mg/L dissolved in the pure chloroform used in the ore assay lab as suggested in UDEQ's June 7, 2001 letter to IUSA) and by the presence of inorganic solutes in the perched water, as detailed below, it can be demonstrated that this depression is not significant.

- 7

The effect of 500 mg/l carbon tetrachloride contaminant on the solubility of chloroform used at the site would be negligible, potentially lowering the solubility by less than 0.05%, because the mole fraction of carbon tetrachloride in the mixture would be less than 0.05%. The presence of significant concentrations of other solvents in perched groundwater near MW-4, which could potentially lower the solubility of chloroform, is not supported by past analytical results. Furthermore, as detailed below, the impact of salinity on chloroform solubility, which will depend on the concentrations of salts in the water, is also not significant.

The solubility of a neutral organic compound such as chloroform in water containing dissolved inorganic salts is generally lowered as the concentration of the inorganic salts increases (Schwarzenbach, 1993; Garrels and Christ, 1965; and Harned and Owen, 1950). The depression of solubility is generally not significant, unless the concentration of the salts is greater than about 0.1 molar (M). At MW-4, the dominant anion is sulfate, which averages approximately 2,000 mg/l, or 0.021M, based on data presented in TITAN, 1994. The average concentrations of chloride, sodium, calcium, and potassium ions average approximately 0.0013M, 0.014M, 0.010M, and 0.0003M, respectively, at MW-4. These concentrations are too low to have a significant effect on the solubility of chloroform in the perched water, at most reducing solubility by a few percent. Even in seawater, where salt concentrations are orders of magnitude higher than in the perched water, the depression of solubility of neutral organic compounds is typically less than a factor of 2 (Schwarzenbach, 1993).

Schwarzenbach, 1993, provides a methodology for estimating the impact of salinity on the solubility of neutral organic compounds. Salting constants (K_s) for various types of salts are provided, with the highest that of sodium sulfate ($K_s = 0.55$). Using the formula provided in Schwarzenbach,

S:\STAFF\MRR\ChloroformInvestigation\UpdateChloroformInvestigationReport 11_9_01

8

and the Addition

$$C_{w+salt}^{sal} = 10^{-K_s \bullet [salt]} \bullet C_w^{sal}$$

where C_{w+salt}^{sal} = solubility of neutral organic compound in salty water, K_s = salting constant, C_w^{sal} = solubility of neutral organic compound in pure water, and assuming that

$$K_s = 0.55$$
, and
[salt] = [SO₄] = 0.021M.

the solubility of chloroform in perched water is calculated as 0.975 C_w^{sat} or 97.5% of the solubility in pure water, a reduction in solubility of less than 3%.

The actual reduction in solubility is likely to be lower for chloroform, however, because the salting-out effect is lower for polar organic compounds (Schwarzenbach, 1993). Because chloroform is somewhat polar, owing to it's asymmetry, which accounts for it's high solubility (10 times that of carbon tetrachloride, which is non-polar), the actual depression of chloroform solubility in perched water is likely to be less than 2.5%. Because the estimated reduction in chloroform solubility is so small, and is nearly an order of magnitude lower than typical laboratory analytical error of \pm 20%, the effect of perched water salinity on the solubility of chloroform can be ignored.

Furthermore, the assumption that DNAPL is not indicated unless dissolved groundwater concentrations greater than 1% of the solubility of the pure product are detected (Cohen and Mercer, 1993) is considered reliable because the lowering of solubility by other factors such as the presence of other solvents, is taken into account in this assumption.

2.3.2 Comparison of MW-4 to Nearby Temporary Wells

Chloroform concentrations in the past have been higher at MW-4 in comparison with nearby temporary wells, although these differences have been slight in recent sampling events. The differences do not indicate DNAPL that may be present at MW-4 or that these differences result from well construction factors, possibilities suggested in UDEQ's June 7, 2001 letter.

Recently measured chloroform concentrations at MW-4 are not significantly higher than at nearby temporary wells. Concentrations at TW4-1 and TW4-2, located immediately downgradient and upgradient, respectively, of MW-4, are within approximately 5% and 12%, respectively, of concentrations at MW-4 as of the June 2001 sampling (Figure 1). Concentrations at MW-4 are within 8% of concentrations at TW4-2 in the September, 2001 sampling. (Concentrations between MW-4 and TW4-1 cannot be compared for the September, 2001 sampling because the TW4-1 sample vial broke in transit to the laboratory and no analysis was performed). These results suggest that differences in concentrations are more likely the result of recovery than well construction factors or the potential presence of DNAPL at MW-4 as suggested by UDEQ. Differences in concentration between MW-4 and nearby temporary wells would be expected to be much larger if DNAPL were present near MW-4. The slightly lower concentrations at the nearby temporary wells, and the reduction in the differences in nearby temporary wells relative to MW-4 over time are consistent with recovery of temporary wells from the air rotary drilling process (as discussed in Section 3). In other words, the reason that MW-4 has had the highest concentrations is more likely due to its age rather than construction.

Furthermore, it is highly unlikely that chloroform DNAPL could have migrated more than 1,200 feet from the source area (the abandoned scale house leach field) to the vicinity of MW-4. The Burro Canyon/Brushy Basin contact is an erosional surface with numerous small-

10

の理論を必要

scale irregularities that would prevent movement of any DNAPL very far from the source area. Even if small scale irregularities did not prevent the movement, the farther the DNAPL moved from the source area, the more spread out it would become, exposing more surface area to the groundwater and making it easier to dissolve. Also, it can be demonstrated that more than sufficient volume of water has passed beneath the abandoned leach field source area to have dissolved all of the chloroform potentially disposed there.

Assuming the following conditions,

Width of abandoned leach field =20 feetAverage saturated thickness =30 feet (conservative)Average hydraulic gradient =0.016 ft/ftAverage hydraulic conductivity =1 ft/day

Approximately 520,000 gallons of perched water have passed beneath the leach field over the past 20 years. (The average hydraulic conductivity was based on the results of a pump test at MW-4 in 1999, which yielded a transmissivity of 38.4 ft^2 /day. Dividing this by the saturated thickness of the perched zone at that time, approximately 40 feet based on a depth to the Brushy Basin of 108 feel bls depicted in the geophysical log of MW-4, yields an average hydraulic conductivity of 1 foot/day.) Assuming a solubility of chloroform of 8,000 mg/l, or 5×10^{-3} gallon chloroform/gallon water, sufficient perched water has flowed beneath the source area to have dissolved more than 10 times the amount potentially used in the ore assay laboratory.

2.3.3 Vertical Profiling of MW-4

As stated above under 2.1, previous vertical profile sampling of MW-4 in 1999 did not indicate that concentrations increased with depth, as would be expected if DNAPL existed near MW-4.

S:\STAFF\MRR\ChloroformInvestigation\UpdateChloroformInvestigationReport 11_9_01

11

į.

Samples were collected from depths of approximately 71 feet bls (approximately 2 feet below the top of the water column) and from near the base of the well (approximately 118 feet bls) using a disposable bailer. The shallow sample was collected first, then the deep sample. If chloroform DNAPL were present at the base of the well, concentrations would be expected to be significantly higher there than at the top of the water column. Instead, sampling results showed no significant difference in concentration between the deep and shallow samples. Chloroform was detected at a concentration of 6,200 μ g/L in the shallow sample and a concentration of 5820 5,280 μ g/L in the deep sample.

More rigorous vertical profile sampling of MW-4 is proposed to characterize the vertical distribution of chloroform concentrations at the site as discussed above in Section 2.1.

2.4 Brushy Basin Contact

UDEQ has expressed concern that the Brushy Basin contact at MW-4 may be depressed and may harbor a pool of chloroform DNAPL. This concern is based on a reported contact depth of 125 ft below land surface (bls) at MW-4. However, the Brushy Basin contact at MW-4 is considered to be at a depth of 108 ft bls based on lithologic logs of nearby temporary wells TW4-1, TW4-2, TW4-7 and TW4-8, and on the geophysical log for MW-4 provided in TITAN, 1994.

The geophysical log for MW-4 provided in TITAN, 1994, depicts the Burro Canyon/Brushy Basin contact at 108 ft bls. This depth is consistent with the lithologic logs of nearby temporary perched monitoring wells TW4-1, TW4-2, TW4-7, and TW-4-8, which depict the contact at approximately 103 ft, 105 ft, 98 ft, and 105 ft bls, respectively. This would place the base of the screened interval of MW-4, which extends to 112 ft bls, approximately 4 feet below the contact.

 $S: STAFF \ MRR \ Chloroform Investigation \ Update \ Chloroform Investigation \ Report \ 11_9_01$

12

The 125 foot depth that has been previously reported for the Brushy Basin at MW-4 is apparently based on the well completion diagram provided in TITAN, 1994, which depicts a contact between "sandstone" and "claystone" at 125 ft bls. However, no additional lithologic information is provided to indicate whether the "sandstone" is continuous from the surface to 125 ft bls, or whether the "sandstone" is a lens or layer encountered within the Brushy Basin. The formation names are also not designated on the diagram.

During drilling of temporary wells TW4-3 and TW4-7, the borings were extended into the Brushy Basin to characterize the lithology of the uppermost portion of the formation. Thin layers or lenses of sandstone and/or conglomeratic sandstone were found at a depth of approximately 108-112 ft bls in TW4-7, 10 feet below the Brushy Basin contact, and depths of approximately 125-132 ft bls in TW4-3, 25 feet below the contact. These lenses or layers in the Brushy Basin were separated from the base of the Burro Canyon by shales, siltstones and claystones. These low permeability materials would hydraulically isolate the lenses or layers of sandy/conglomeratic material within the Brushy Basin from the Burro Canyon.

With regard to the geophysical log of MW-4, there is a clear response in the natural gamma at 108 ft bls. This response is also consistent with the natural gamma response at the Brushy Basin contact as depicted in other geophysical logs at the site and is consistent with the lithology logged at nearby temporary wells. Because the geophysical log depicts the Brushy Basin contact at 108 ft bls in MW-4 and because this is consistent with lithologic logs of nearby temporary wells, the 108 foot depth is considered reliable.

Therefore, any DNAPL potentially present near MW-4 would be expected to enter the well screen, and to raise the measured chloroform concentrations at MW-4 nearer the solubility S:\STAFF\MRR\ChloroformInvestigation\UpdateChloroformInvestigationReport 11_9_01 13

of chloroform (8,000-10,000 mg/l). Because the measured concentrations of chloroform at MW-4 are more than 3 orders of magnitude lower than the solubility, no DNAPL is indicated. Furthermore, if DNAPL were present near MW-4, concentrations should be at least one to two orders of magnitude higher that at TW4-1, TW4-2 and TW4-4, rather that only 5%, 12%, and 48% higher as of the June, 2001 sampling.

Installation of an exploratory boring near MW-4 as suggested by UDEQ to characterize the contact is not considered necessary based on the geophysical log of MW-4 provided in TITAN, 1994, the lithologic logs of nearby temporary wells, and the lack of evidence for DNAPL in the analytical data. The depth to Brushy Basin of 108 feet bls depicted on the geophysical log of MW-4 is consistent with the depths provided in the nearby lithologic logs and is considered reliable.

A contour map of the top of the Brushy Basin, using the 108 ft depth at MW-4, is provided in Figure 2.

14

3. ADDITIONAL PLUME DELINEATION

UDEQ has expressed concern that more temporary perched wells are needed to define the extent of chloroform in the perched water, and that piezometers are needed in the northeast portion of the site to better define changing water level gradients and to identify sources of recharge. This section discussed the distribution of chloroform in the perched water both spatially and temporally, the need for new temporary wells to the west and northwest of MW-4 based on observed trends in the chloroform data, and the relationship of chloroform to nitrate which is consistent with a leach field origin.

3.1 Analytical Results from Temporary Wells

Chloroform analytical results for MW-4 and temporary wells are shown in Figure 1. The chloroform plume is bounded to the south (downgradient) by non-detect results at TW4-6, although the recent detection of 3.6 μ g/L chloroform at TW4-6 may indicate arrival of chloroform at that well. The upgradient well (TW4-5) and lateral wells (TW4-7 and TW4-8) show chloroform concentrations in excess of 100 μ g/L, although concentrations at these wells are much lower than at MW-4, TW4-1 and TW4-2.

The increases in concentration detected in most of the temporary wells after installation are most likely related to recovery of concentrations that were lowered as a result of the air rotary drilling method, and the generally long recovery times expected when wells are installed in low permeability formations. Temporary wells located downgradient (south) of MW-4 are affected by both the recovery process and by continued southerly migration of the chloroform plume. These and other temporal trends will be discussed further in Section 3.5. IUSA will continue to monitor and report results to the UDEQ.

3.2 Hydraulic Gradient in the Vicinity of MW-4

The hydraulic gradient in the vicinity of MW-4 has historically been to the south (IUSA and HGC, 2000). Recent water level contour maps are provided in Figures 3 and 4.

The change in water levels and change in hydraulic gradient to a more westerly direction in the vicinity of the abandoned leach field are recent, and the direction of the hydraulic gradient during most of the period of migration of the plume was southerly. A southerly gradient still exists near MW-4 and at the downgradient edge of the plume. The recently detected more westerly hydraulic gradient near the scale house leach field is of no concern unless a residual chloroform source is present, but the assumption of a residual source is not supported by any of the soil gas or groundwater data collected to date. IUSA plans to install piezometers, in a phased fashion, in the northeast portion of the site to further investigate the increase in water levels and change in hydraulic gradient. This work will be described in a report to UDEQ due on November 16, 2001.

The water level map provided by UDEQ in their June 7, 2001 letter to IUSA indicates a concern as to whether or not there may be a possible groundwater mound near MW-4.

This feature is likely not a mound but the result of locally semi-confined conditions related to the stratigraphy of the perched zone. This type of feature is common in water table aquifers even where the hosting lithology consists of unconsolidated layered sands and gravels いたい

with local interbeds of silt and clay. These small-scale fluctuations in the regional flow field can be ignored when considering the large scale flow of groundwater and transport of solutes.

3.3 Need for Additional Wells to Delineate Chloroform in the Perched Zone

The vertical dimension of the chloroform in perched water will be addressed by vertical profile sampling as discussed in Section 2.1. The lateral dimension of the plume is defined in large part by the existing temporary well network but further delineation is likely needed to the west and northwest of MW-4. Additional downgradient delineation may be needed in the future as the plume continues to move to the south.

UDEQ provided a chloroform isoconcentration map in its June 7, 2001 letter to IUSA. While this map indicates that further lateral delineation of the plume is needed, to the west and northwest of MW-4, the chloroform isoconcentration map prepared by UDEQ displays a number of features that are not hydrogeologically reasonable. These features are related to:

- 1) Non-uniform distribution of input data leading to unavoidable errors in computer gridding and contouring unless specific measures are taken to counteract them,
- 2) The impossibility of providing hydrogeologic input to the computer gridding and contouring algorithm such as, for example, historical groundwater gradient information, and
- 3) The assignment of detectable chloroform concentrations to downgradient wells that have always been non-detect for chloroform

Some of the resulting erroneous features displayed in the map include the following:

1) The depicted plume extends farther cross-gradient and up-gradient than downgradient which is not hydrogeologically reasonable.

S:\STAFF\MRR\ChloroformInvestigation\UpdateChloroformInvestigationReport 11_9_01

17

- 2) The detectable chloroform isoconcentration contours extend up to and beyond wells that have always been non-detect for chloroform, which is not hydrogeologically reasonable.
- "Bulls eye" features occur that are related to the non-uniform distribution of data, 3) choice of gridding parameters, and unavoidable limitations of the gridding and contouring package. There is no hydrogeologic mechanism that can result in such features.
- 4) Unless chloroform is actually detected at the downgradient wells, the downgradient edge of the plume will always be at or just beyond these same wells that are nondetect for chloroform, resulting in a plume whose extent is time independent. This is not hydrogeologically reasonable unless a steady-state condition has been reached.

The apparent northwest trend in the isoconcentration contours in the map produced by UDEQ is an artifact resulting partly from the well density west and northwest of MW-4, and partly from the non-uniform distribution of data, the lack of hydrogeologic input in producing the map, and the assignment of detectable chloroform concentrations to wells that have been non-detect for chloroform.

IUSA proposes to install two new temporary wells to the west and northwest of MW-4, as shown in Figure 5, to help delineate the extent of the plume to the west and northwest where control is poor. Additional wells to the east and south may be considered at a later time based on the results of continued monitoring at the site.

Temporal Trends in Chloroform Concentrations and Relationship to Nitrate 3.4

Figure 1 shows the chloroform concentrations over time measured in MW-4 and temporary wells near MW-4. As discussed in section 3.1, initial increases in most of the temporary wells are likely related to recovery from the drilling process which used primarily air as a drilling fluid, and small amounts of water as needed to maintain circulation. Increases at wells upgradient (north) of MW-4 are most likely due to recovery alone, while downgradient S:\STAFF\MRR\ChloroformInvestigation\UpdateChloroformInvestigationReport 11_9 01 18

wells (south of MW-4) are expected to respond to both recovery and continued downgradient (southerly) plume movement. For example, the rapid increase in concentration at TW4-1 after installation could not likely have resulted from recovery alone, but must also have resulted from movement of the leading edge of the plume past that well. Increases in concentration from non-detect to 3,200 μ g/L at TW4-4 are also likely to have resulted primarily from continued plume movement to the south.

Concentrations at upgradient wells TW4-5, TW4-9, and TW4-3 have stabilized or decreased after the initial increase related to recovery. Concentrations at lateral wells TW4-7 and TW4-9 are stabilizing. These trends are consistent with the initial interpretation of a "slug" of chloroform entering the perched water over a relatively short period of time (1-2 years) and migrating downgradient toward MW-4, TW4-1, and TW4-4. The width of the plume near MW-4 will be addressed by the installation of two new temporary wells to the west and northwest of MW-4.

Figure 6 is a plot of nitrate concentrations over time at MW-4 and the temporary wells. There is a clear correlation between chloroform and nitrate concentrations which is consistent with a leach field origin. Figure 7 is a scatterplot of chloroform vs. nitrate through the June, 2001 sampling, which illustrates this correlation.

 $S: STAFF \ MRR \ Chloroform Investigation \ Update \ Chloroform Investigation \ Report \ 11_9_01$

19

4. COORDINATES REQUESTED BY UDEQ

A copy of estimated coordinates for the following locations was previously transmitted to UDEQ on September 7, 2001, and was provided during the meeting on October 5. They are also provided in this report in Appendix C.

- Former mill office building sanitary leach field,
- Former mill office building laboratory wastewater holding tank and pipeline to Evaporation Cell 1.
- Former office trash disposal area

5. PERCHED ZONE PERMEABILITY

UDEQ has expressed concern about the permeabilities derived from the hydraulic tests at MW-4, and whether chloroform could have migrated from the abandoned scale house leach field to MW-4, and whether chloroform could have migrated from the abandoned scale house leach field to MW-4 via conglomeratic materials logged in temporary wells at the site, as suggested in the CIR. This section discussed the results of hydraulic testing at MW-4, the probable coincidence of a high permeability zone evident in the MW-4 test data with conglomeratic materials logged in nearby temporary wells, and the likelihood that these conglomeratic materials influence the flow of perched water and transport of chloroform near MW-4.

5.1 Permeability Distribution of the Perched Zone

An updated perched zone permeability map is provided in Figure 8. The permeabilities plotted on the map are based on the results of pump and slug tests where available, or on constant head packer tests within the perched zone. Test results by Peel were used where available, except the value plotted for MW-4 ($3.5 \times 10^{-4} \text{ cm/s}$), which was based on a transmissivity of 38 ft²/day measured during a 1999 pump test by HGC. The saturated thickness at that time was calculated as 39 feet assuming a Brushy Basin contact at 108 ft bls. A detailed discussion of tests at MW-4 will be provided in a report to UDEQ due on November 16.

5.2 Conglomeratic Zone Near MW-4

Varying thicknesses of conglomeratic material are present below the water table in all temporary wells north of TW4-1 (Figure 9). The base of this zone is approximately 95 feet bls in TW4-1, and TW4-2, and approximately 88 ft bls in TW4-7. A higher permeability zone with a base at a depth of approximately 95 feet below top of casing (btoc) is evident in the drawdown data collected during a pump test by Peel at MW-4 in 1992 (UMETCO, 1994). During the first

10 States

3 hours of pumping at a constant rate of 0.46 gpm, only about 2 ½ feet of drawdown was measured. Then, as water levels dropped below approximately 95 feet btoc, the rate of drawdown increased by about a factor of 30. Similar behavior occurred in a test conducted at 0.92 gpm, except that the break in slope occurred in about half the time. This behavior is consistent with dewatering of a higher permeability zone having a base at 95 feet btoc near MW-4 at about 3 hours into the test. This zone most likely coincides with the conglomeratic zone logged at nearby temporary wells. Because this conglomeratic zone is present below the water table at all wells north (upgradient) of TW4-1, and has a relatively high permeability based on the pump tests at MW-4, it likely influences the flow of the perched water, and therefore the transport of chloroform, in the vicinity. Furthermore, the least productive temporary wells at the site, TW4-4 and TW4-6, have very thin conglomeratic zones that are located above the water table where they cannot at present affect the movement of perched water at the site.

A detailed discussion of tests at MW-4 and interpretation of results will be provided in a report to UDEQ due November 16.

22

10.24

6. ONGOING GROUNDWATER MONITORING AND REPORTING

As stated in Section 5.1 of the CIR, the sampling results to date indicate that elevated chloroform concentrations are confined to a relatively narrow zone. Elevated chloroform concentrations have not moved significantly downgradient of TW4-4.

To ensure that samples collected from the temporary wells are representative of the perched groundwater, continued monitoring has been performed on a quarterly basis in the temporary wells (TWs) and in MW-4. Measurements have included depth to water, electrical conductivity, temperature, pH, and chloroform concentration. Nitrate has also been measured in temporary wells TW4-1, TW4-3, and TW4-4.

Continued potential movement of the elevated chloroform concentrations is being monitored using the new temporary wells, TW 4-4 and TW 4-6 located downgradient of TW 4-1. Also, based on hydraulic conductivity estimates at MW-4, and the magnitude of the groundwater gradient, the travel times can be used to estimate the effective porosity of the perched zone in this vicinity.

IUSA will continue to collect chloroform data for all of the wells involved in the chloroform investigation, including well MW-4, all the existing TW-4 series wells, and all future monitoring wells that are installed to delineate the area of chloroform contamination.

Table 1 is a summary of data collected to date from the TW-4 series wells. Quarterly analytical results which were not preciously transmitted to UDEQ in split sampling data

「「「「「「「「」」」

packages for data collected since the transmittal of the CIR to the present are included in Appendix D.

To ensure adequate time for sample analysis, laboratory data validation, IUSA data validation, and reporting, IUSA proposes to submit the data, together with the quarterly summary report, to UDEQ in accordance with the following schedule:

QuarterSubmittal Due DateJanuary - MarchMay 30April - JuneAugust 30July - SeptemberNovember 30October - DecemberFebruary 30

S:\STAFF\MRR\ChloroformInvestigation\UpdateChloroformInvestigationReport 11_9_01

24

7. ADDITIONAL GROUNDWATER MONITORING PARAMETERS

The primary purpose for measuring additional groundwater parameters within and near the chloroform plume should be to establish the likelihood that chloroform is degrading naturally (either chemically or biologically) within the perched water.

The natural degradation pathway for chloroform is for chlorine atoms to be successively replaced by hydrogen under anaerobic, reducing conditions, via reductive dechlorination. Chloroform will degrade to its daughter product, dichloromethane (DCM) under these conditions, and may ultimately degrade to methane. The presence or absence of DCM would help establish whether or not this process is occurring at a significant rate.

The presence of nitrate concentrations in the perched water near MW-4 that are generally higher than the chloroform concentrations, however, indicates that groundwater conditions are not presently favorable for this process. Under conditions favorable for reductive dechlorination, nitrate will also be expected to degrade, and at a higher rate than chloroform. For this reason, existing analytical data provides an indirect estimate of redox conditions, which do not appear favorable for reductive chlorination.

7.1 Dichloromethane Analytical Results From Split Sampling

Previous split sampling analytical results indicate that DCM is not present in perched water near MW-4 at detectable concentrations (1 μ g/L). This is consistent with conditions that are not favorable for reductive dechlorination of chloroform.

25

¥

7.2 Direct Measurement of Redox Conditions in the Field

At UDEQ's request, IUSA had evaluated the feasibility of obtaining relatively reliable measurements of reduction-oxidation potential (redox, or ORP) for groundwater, using field instruments. As described in the U.S.G.S. Field Manual, Chapter 6.5, in contrast to other field mesaurements, the determination of redox "should not be considered a routine measurement" and is "not recommended in general because of the difficulties inherent in its theoretical concept and its practical measurement" (see Appendix D). The U.S.G.S. notes that "Eh measurement may show qualitative trends, but generally cannot be interpreted as equilibrium values". Hydrolab Corporation, the supplier of the Hydrolab Surveyor 4a Instrument currently being used at the Mill for field measurement of pH, temperature, and electrical conductivity in groundwater, has indicated that the instrument's available redox electrode, which can be retrofitted to the Mill's instrument, has somewhat improved capability of measuring redox, as compared with earlier models. Hydrolab's Tech Note 204 listing parameter specifications is included in Appendix D. Response time is not specified on Tech Note 204, and IUSA will need to establish a procedure to determine at what point the redox value would be selected. Also, to avoid potential exposure to quinhydrone, the Mill would use Zobell solution to calibrate the new redox electrode, after it has been added to the instrument.

7.3 Feasibility of Enhancing Reductive Dechlorination In-Situ

Reductive dechlorination can be enhanced in-situ by adding substances such as hydrogen release compound, or substances that accomplish the same purpose such as molasses or ethyl alcohol, which release hydrogen during fermentation (Odom, Martin J et al, 1995), and mixing

STORES!

them with the perched water. The mixing process will be facilitated at the site because temporary wells currently exist along almost the entire extent of the chloroform plume, with a number of wells completed in that portion of the plume with the highest chloroform concentrations. Existing data indicate that this process will be feasible, however additional data will be collected prior to making a final determination of the feasibility and developing a work plan for implementation.

S:\STAFF\MRR\ChloroformInvestigation\UpdateChloroformInvestigationReport 11_9_01

27

	TW4-1	TW4-2	TW4-3	TW4-4	TW4-5	TW4-6	TW4-7	TW4-8	TW4-9	MW-4
Approximate screened interval (feet bls)	70-110	80-120	67-97	72-112	80-120	57.5-97.5	80-120	85-125	80-120	92-112
Chloroform (µg/L) (1st sampling)	5.8	2,510	702	NS	29.5	NS	256	<1	4.2	NS
Chloroform (µg/L) (2nd sampling)	1,100	5,520	834	NS	49	NS	616	21.8	1.88	NS
Chloroform (µg/L) (3rd sampling)	1,490	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chloroform (µg/L) (initial sampling of TW4-4 and TW4-6)	NS	NS	NS	<0.5	NS	<0.5	NS	NS	NS	NS
Chloroform (µg/L) (4th Sampling) (2nd sampling of TW4-4 and TW4-6)	2,230	5,220	836	<1	124	<1	698	102	14.2	NS
Chloroform (µg/L) (11/00 sampling)	3,440	4,220	836	3.85	255	<1	684	107	39.4	6,470
Chloroform (µg/L) (03/01 sampling)	2,340	3,890	347	2,260	236	<1	747	116	43.6	4,360
Chloroform (µg/L) (06/01 sampling)	6,000	5,500	390	3,100	240	<1	1,100	180	59	6,300
Chloroform (µg/L) (09/01 sampling)	NA	4,900	300	3,200	240	3.6	1,200	180	19	5,300
Nitrate (mg/L) (11/00 sampling)	7.79	10.7	1.97	1.02	3.16	<0.1	1.99	<0.1	<0.1	9.37
Nitrate (mg/L) (03/01 sampling)	7.15	10.2	1.85	14.5	3.88	0.13	2.46	<0.1	<0.1	8.77
Nitrate (mg/L) (06/01 sampling)	8.81	9.67	2.61	14.0	6.47	<0.1	2.65	<0.1	0.15	9.02

1,92.0

 TABLE 1

 MW-4 and Temporary Perched Well Completion and Analytical Parameters

NS = not sampled

NA = not analyzed

H:/71800/chloroform table 1.xls

8. **REFERENCES**

Cohen, Robert M and James Mercer. 1993. DNAPL Site Evaluation. Library of Congress

- Harned, Herbert S and Benton B Owen. 1950. <u>The Physical Chemistry of Electrolytic</u> <u>Solutions.</u> American Chemical Society Monograph Series. Reinhold Publishing Corp.
- International Uranium (USA) Corporation, and Hydro Geo Chem (HGC), 2000. <u>Investigation of</u> <u>Elevated Chloroform Concentrations in Perched Groundwater at the White Mesa</u> <u>Uranium Mill Near Blanding, Utah.</u> Submitted to UDEQ.
- Odom, J Martin, Jo Ann Tabinowski, Michael D. Lee, and Babu Z. Fathepure, 1995. <u>Anaerobic</u> <u>Biodegradation of Chlorinated Solvents:</u> Comparative Laboratory Study of Aquifer <u>Microcosms.</u> In Bioremediation of Chlorinated Solvents. Battelle Press.
- Schwarzenbach, Renee P; Phillip M Gschwend, and Dieter M Imboden. 1993. <u>Environmental</u> <u>Organic Chemistry</u>. John Wiley and Sons.
- Titan, 1994. <u>Hydrogeologic Evaluation of White Mesa Uranium Mill</u>. Submitted to Energy Fuels Nuclear.
- Umetco, 1994. <u>Groundwater Study, 1994 Update</u>. White Mesa Facility, Blanding, Utah Submitted to United States Nuclear Regulatory Commission.
- U.S. Geological Survey, 1998. <u>Reduction-Oxication Potential (Electrode Method)</u>. Chapter 6.5, Field Manual. Available on-line at <u>http://water.usgs.gov/owq/FieldManual/Chapter6/6.5_contents.html</u>

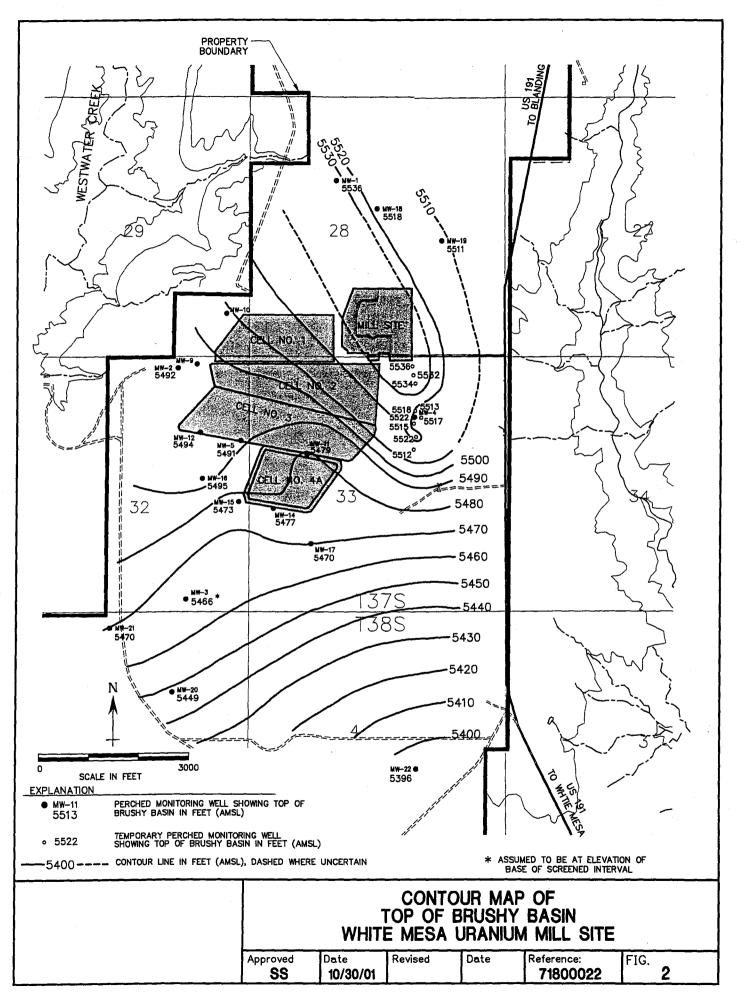
S:\STAFF\MRR\ChloroformInvestigation\UpdateChloroformInvestigationReport 11_9_01

28

HÖUSE ÝPROXIMATE LOCATION OF ABANDONED LEACHING FIELD 29.5 49.0 NS 124 tw4-5 255 236 4.2 240 1.9 240 NS 14.2 --•**①** /tw4-9 39.4 44. 702 59. 834 19. NS tw4-3 🜔 836 836 347 390 300 2510 5520 NS 5220 4220 3890 **į** 5500 4900 tw4-2 < 1 S) 256 21.8 616 NS 6300 NS 102 698 5300 ¹⁰⁷ tw4-8 684 ∕tw4-7 116 747 5.8 180 🖹 1100 1100 ,180 1200 ß 1490 2320 tw4-1 perched monitoring well 3440 MW-4 showing chloroform 2340 (uG/L) in 6/01 and 9/01 6000. NA samplings NS tw4-4 < 1 < 1 3.9 2260 3100 3200 tw4-1 broke in ŃS €tw4 transit to the NS < 1 laboratory so < 1 no analysis < 1 was performed < 1 on 9/01 sample 3.6 200 4*0*′0 CHLOROFORM ANALYTICAL RESULTS (uG/L) FOR TEMPORARY PERCHED WELLS (through september, 2001) Reference Date Approved Figure 1

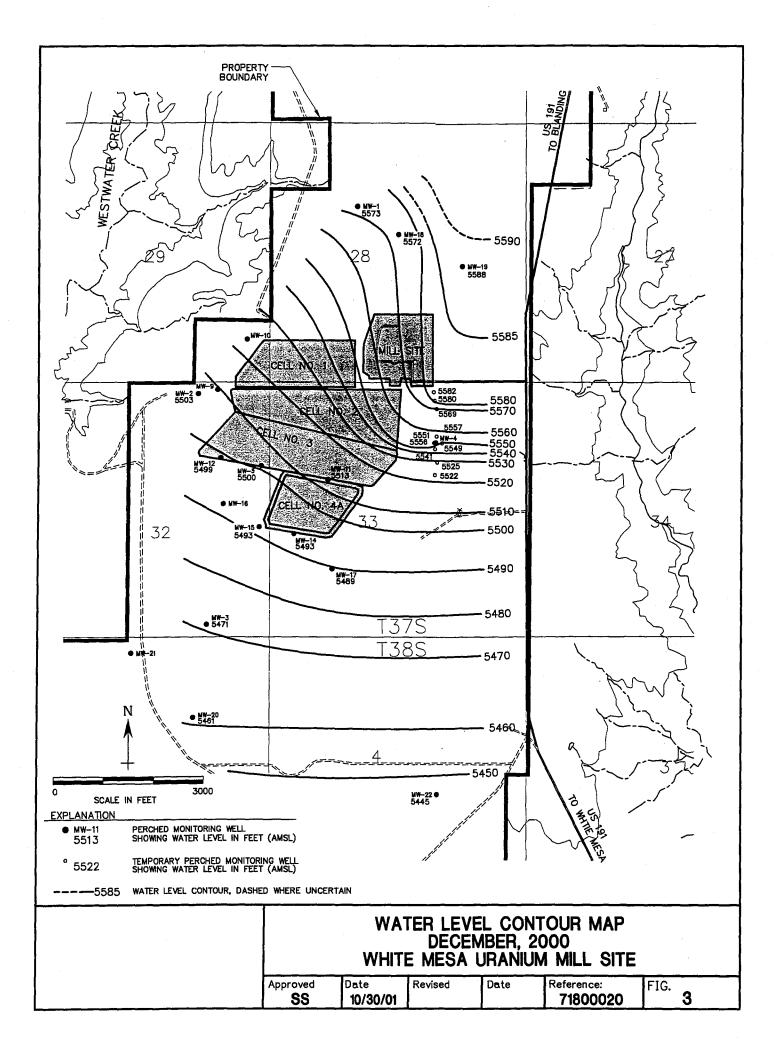
SCAL

10000

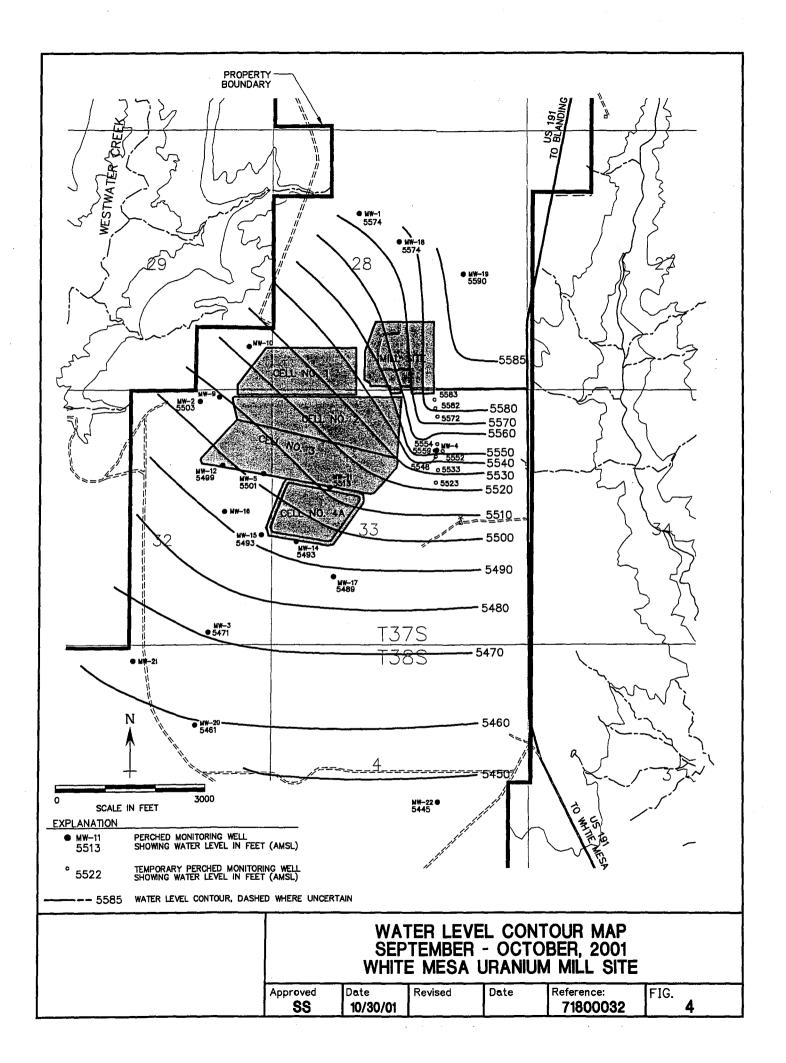

EXPLANATION

temporary perched well showing chloroform (uG/L) in

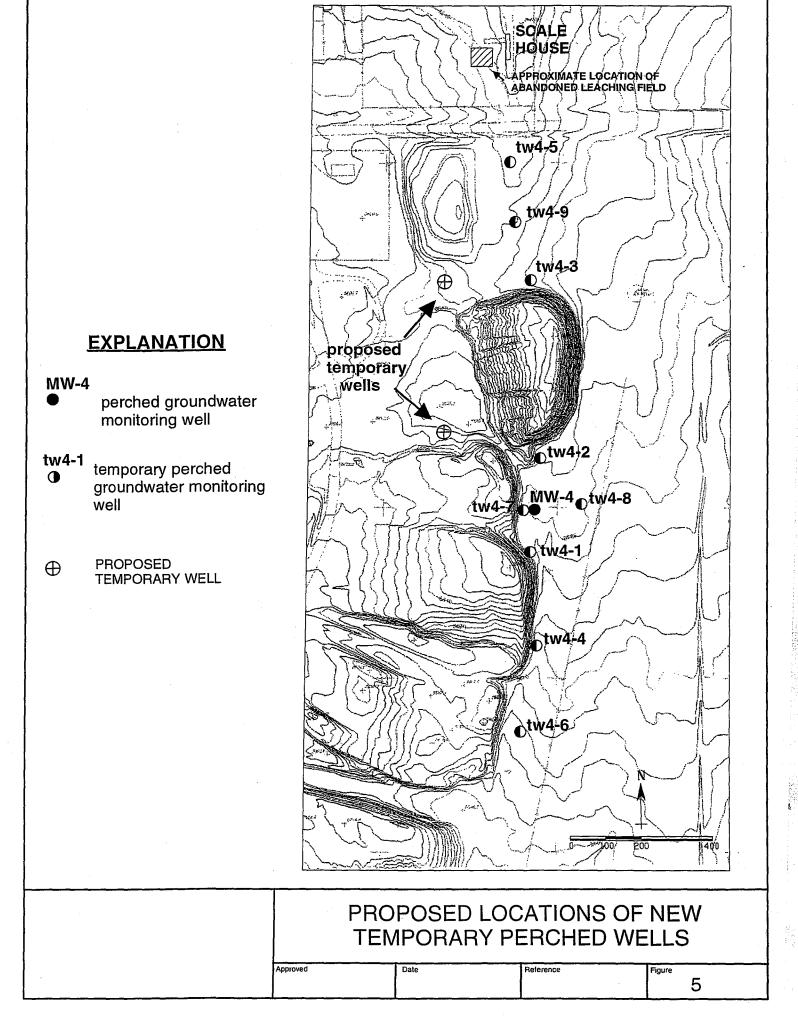
^	702	initial sampling							
0	834	second sampling							
	NS	third sampling							
	836	fourth sampling							
	836	11/00 sampling							
	347	03/01 sampling							
	390	06/01 sampling							
	300	09/01 sampling							


6300 5300

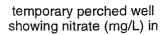
NOTE: sample vial for


1.72.55

0.000000


1.1.1.1.1.1.1.1.1.1.1

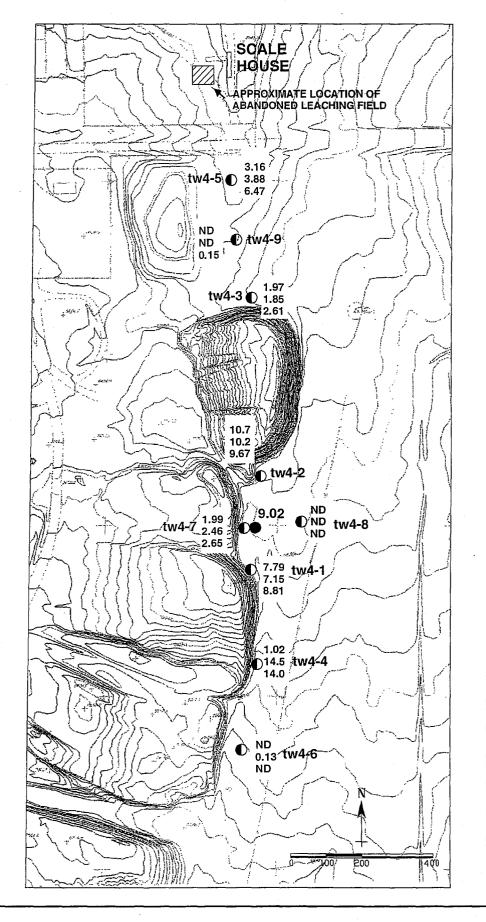
A MARKET LA CARGE .



13234

200900 -

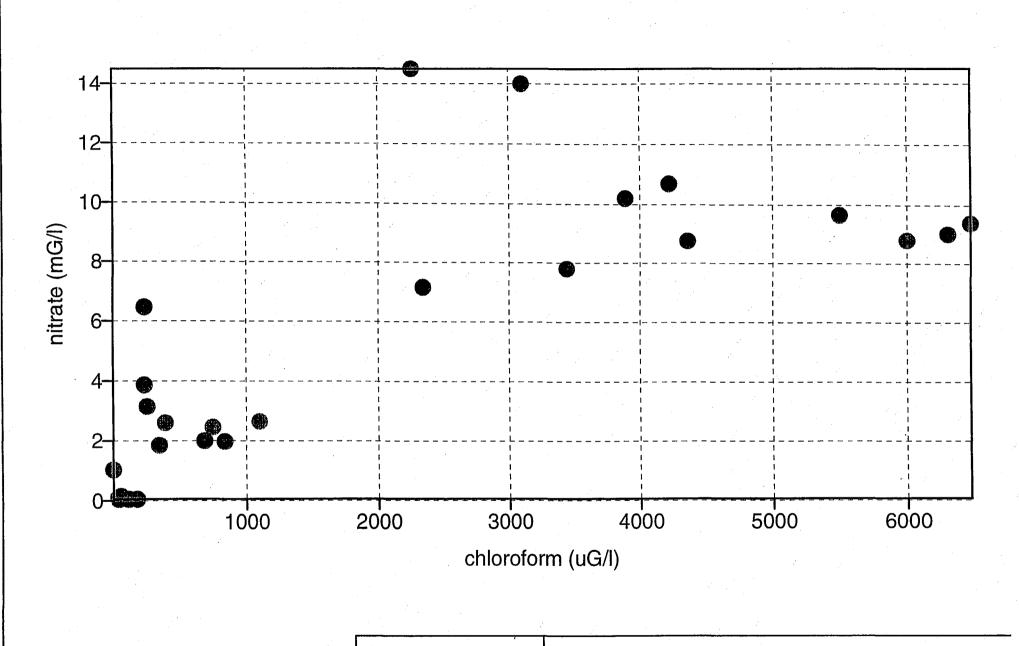
EXPLANATION


1.02	11/00 sampling
14.5	03/01 sampling
14.0	06/01 sampling

9.02

0

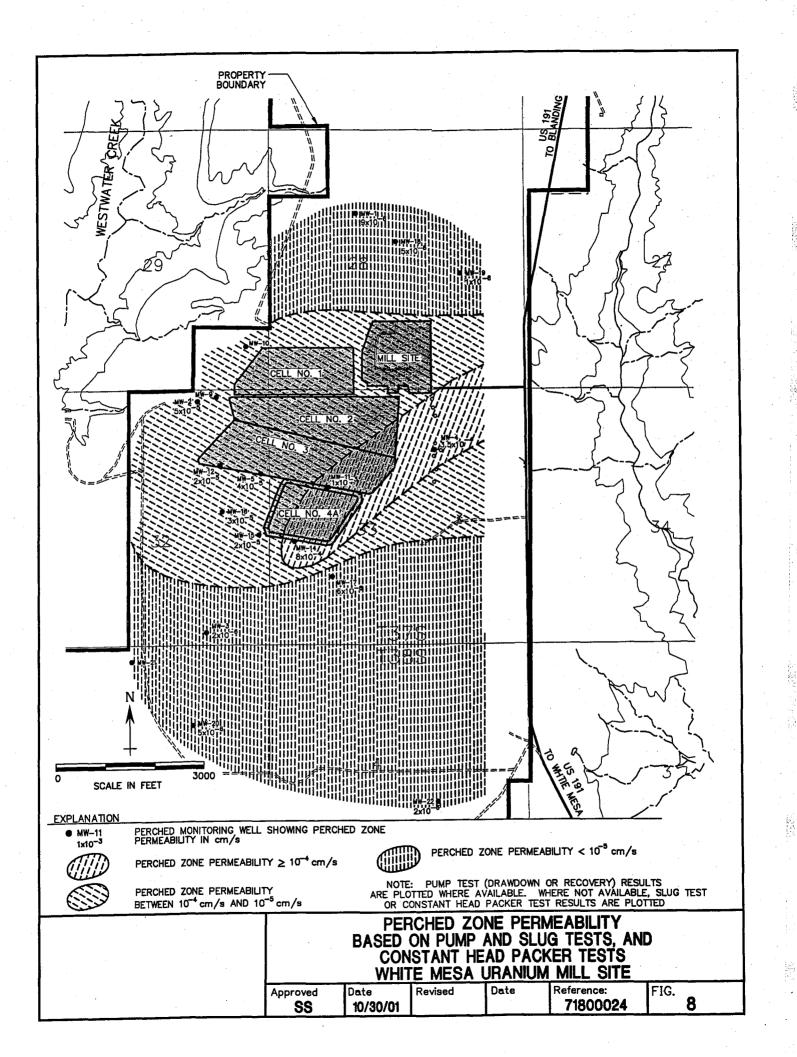
perched monitoring well MW-4 showing nitrate (mg/L) in 6/01 sampling

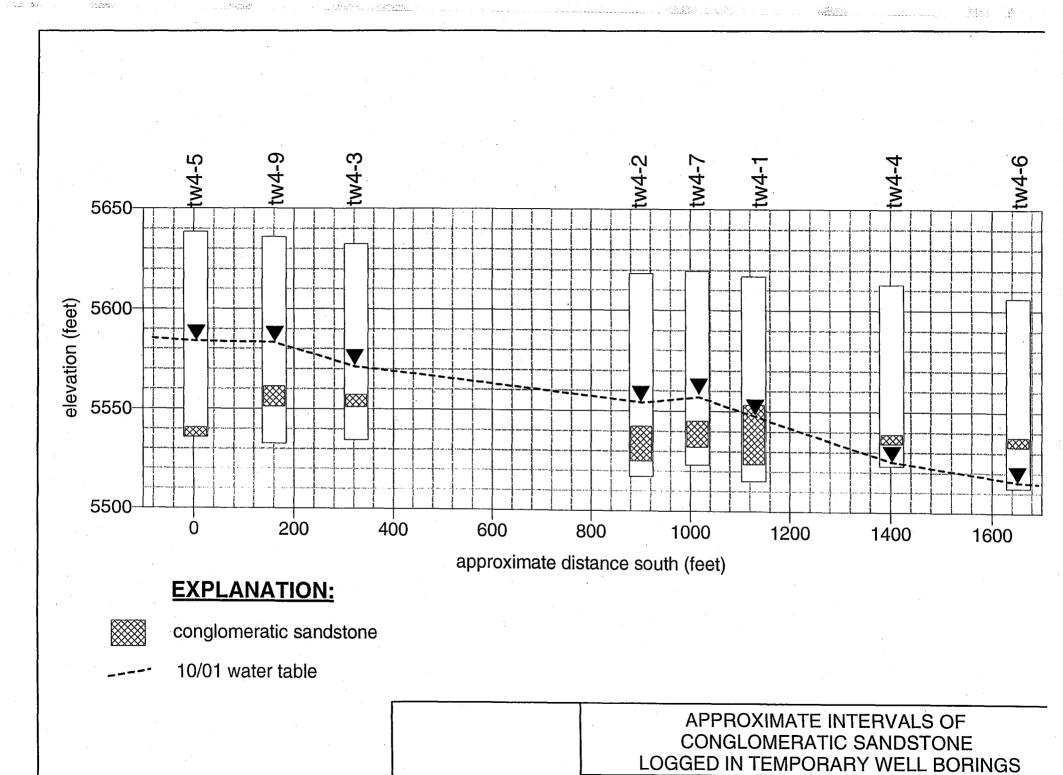

ND = not detected at 0.1mg/L

1.5

NITRATE ANALYTICAL RESULTS (mg/L) FOR TEMPORARY PERCHED WELLS

1	Approved	Dale	Reference	Figure
				6
J	_			




SCATTERPLOT OF CHLOROFORM VS NITRATE TEMPORARY PERCHED WELLS AND MW-4

 $d_{1}R_{1}$

Approved	Date	Reference	Figure 7
			1

a Calendary Santakana

Approved

Date

Figure

Reference

APPENDIX A

Vertical Profile Sampling Methods

Try Geotech Products for All Try Geotech Products Veeds Your Environmental Needs Your Environmental J Purchase J Rental J Rental J Rental

Leaders in **manufacturing** and **distributing** ground and surface water **sampling**, **analytical**, **filtration**, and **remediation** equipment.

Bailers

Geotech Disposable and Reusable Bailers

Geotech disposable and reusable bailers are available in many configurations and materials to meet your specific sampling needs.

DISPOSABLE BAILERS

- Improved bailer design
 - Geotech's "Orbit Flux" design fills 33% faster than other bailers
 - V-notch design for trouble free cord attachment, and accurate pouring
- Weighted disposable bailer as heavy as most double-weighted without the extra cost

Manufactured under strict clean-room conditions

- Made of virgin, FDA approved high-density poly resin
- The polyethylene contains no plasticizers or additives, and no regrinds are accepted

Optional double check valve bailers isolate the sample, sealing as the bailer is removed from the well at specific depths

Certified special clean disposable bailers available upon request

DISPOSABLE ACCESSORIES

- Product sampler for floating hydrocarbons
- VOC sampler uses a unique design that allows sample transfer to VOA vials with minimal loss of VOCs

REUSABLE BAILERS

- PVC white and clear
 - Diameters from .675" to 3.5" in lengths 12" to 60"
 - Recessed check and double check available

Stainless Steel Geobailers


- 1" and 1.75" diameters are 36" long
- Rugged and durable for well development

Teflon® Geobailers

- 1.25" and 1.625" diameters are 36" long
- Most inert material available

Geotech Disposable Bailers

Disposable Accessories

Geotech Reusable Bailers

Geotech Disposable Bailers are available in the following configurations:

Material	<u>Diameter</u>	Length	Configurations	Units/case
Poly	75"		Weighted/Non Weighted	24 per case
			Weighted/Non Weighted/Pressurized	
			Weighted/Non Weighted	
Teflon®	1.5"	12", 36"	Weighted/Non Weighted	12 per case
Clear PVC	46", .75", 1.5"	36"	N/A	30 per case

Accessories

24 per case
9 per case
12 per case
24 per case

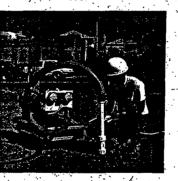
Geotech Pressurized Disposable Bailers

This special disposable bailer provides the convenience of using in-line dispos-a-filters™ in the field even when pumps are not available. By using a pneumatic hand pump you can filter your samples directly from the bailer, saving time while maintaining sample integrity.

Each bailer comes complete with a barbed hose adapter for attaching the hand pump to the top of the bailer, and a special adapter with a notched thread to be used with a dispos-a-filter™ at the bottom. In order to displace the check ball and establish a smooth flow, an additional large barbed removal device is included for bottom emptying without filtering.

ORDER TODAY (800) 833-7958

APPENDIX B


Use of Soil Gas to Detect DNAPL

GRA Seminar Series 1997

Groundwater Resources Association Presents

Innovative Soil Gas Monitoring and Remediation Applications

Wednesday, September 24, 1997 McClellan Air Force Base, Sacramento, California and Thursday, September 25, 1997 Wyndham Garden Hotel, Costa Mesa, California

ROUNDWATER RESOURCES ASSOCIATION

THE USE OF SOIL GAS DATA TO OBTAIN SOIL VOC CONCENTRATIONS

AND

TO IDENTIFY THE PRESENCE OF NAPL

by

Harold W. Bentley Hydro Geo Chem, Inc. 6905 E. Ocean Blvd Long Beach, California 90803 Gary R. Walter Hydro Geo Chem, Inc. 1430 N. 6th Avenue Tucson Arizona, 85705

THE USE OF SOIL GAS DATA TO OBTAIN SOIL VOC CONCENTRATIONS AND TO IDENTIFY THE PRESENCE OF NAPL

1. Conversion of Soil Gas Concentrations to Soil Concentrations

The concentration of a VOC in soil gas can be converted to its total concentration in the soil by considering the equilibrium laws governing the partitioning of the VOC between the gas, liquid, and solid phases. The reasoning and methodology are as follows:

Unless a separate liquid phase of VOC, i.e., a NAPL, is present, the soil gas concentration is controlled by the distribution of the VOC between the soil, water and soil organic matter. If the moisture content in the soil is greater than 5%, normally the case, the vapor phase contaminant concentration will be controlled by its gas-water distribution coefficient, the Henry's Law coefficient (H). The Henry's Law coefficient can be written in its dimensionless form, H_D . The dimensionless Henry's Law coefficient relates the concentration of a compound in the vapor phase to its concentration in the aqueous phase

$$H_0 = C_1/C_w = H/RT - \rho_s/S$$

where H

R

is the Henry's Law coefficient

is the ideal gas constant

T is degrees Kelvin

 ρ_s is the VOC's vapor density (the vapor pressure of the pure liquid expressed as mass/unit volume).

and S is the water solubility

The aqueous-phase concentration will in turn be controlled by the distribution of contaminants between water and the solid soil matrix. This distribution is governed by K_D , the water-solid distribution coefficient. Rarely is the direct distribution of contaminants between the gas and solids important.

If the water-solid distribution is controlled by adsorption onto organic carbon, which occurs above organic carbon concentrations of approximately 0.001 (fraction), (Chiou and Shoup, 1985) the water-solid distribution coefficient is

$$K_{D} = \frac{C_{s}}{C_{W}} = \frac{K_{OC} \cdot \%OC}{100}$$

(2)

(1)

where Cs

is the concentration in the solid [mass VOC/mass solids] is the concentration in the water [mass VOC/volume water] is the water-organic carbon distribution coefficient is the fraction, by weight, of organic carbon in the soil

c:\info.doc\sgs_soil.cnv

C_w

foc

Koc

The total soil VOC concentration (M/L^3) is the sum of the mass/unit volume in each of the three phases:

$$C_{r} = C_{s}\rho_{h} + C_{w}\theta_{w} + C_{a}(\theta_{T} - \theta_{w})$$

where

and

C _g C _i	is the concentration in the gas [M/V air] is the total concentration in the soil [M/V (bulk volume so	oil)]
ρ	is the bulk dry soil density [M/V solid]	•
θ_{τ}	is the total porosity	
θ,	is the water filled porosity	

The ratio of a VOC's total concentration in the soil gas to its concentration in the soil is given by substituting (1) and (2) in (3) and dividing by bulk density (ρ_b) to convert soil concentration units from mass/volume to mass/mass:

$$\frac{C_{\tau}}{C_{\sigma}} = \frac{K_{D}}{H_{D}} + \frac{\theta_{w}}{H_{D}\rho_{b}} + \frac{(\theta_{\tau} - \theta_{w})}{\rho_{b}}$$

where C_{τ} is the total concentration in the soil (M/M)

Table 1 presents an example of the results of using (4) to relate soil gas and soil concentrations. For each of the compounds listed, a soil gas concentration of 100 μ g/L was converted to the equivalent soil VOC concentration in μ g/kg. The soil parameters utilized in the calculation were f_{OC} (fraction) = 0.005; total porosity (fraction) = 0.40; volumetric moisture content (fraction) = 0.2; and dry soil bulk density (gm/cm³) = 2.00.

(4)

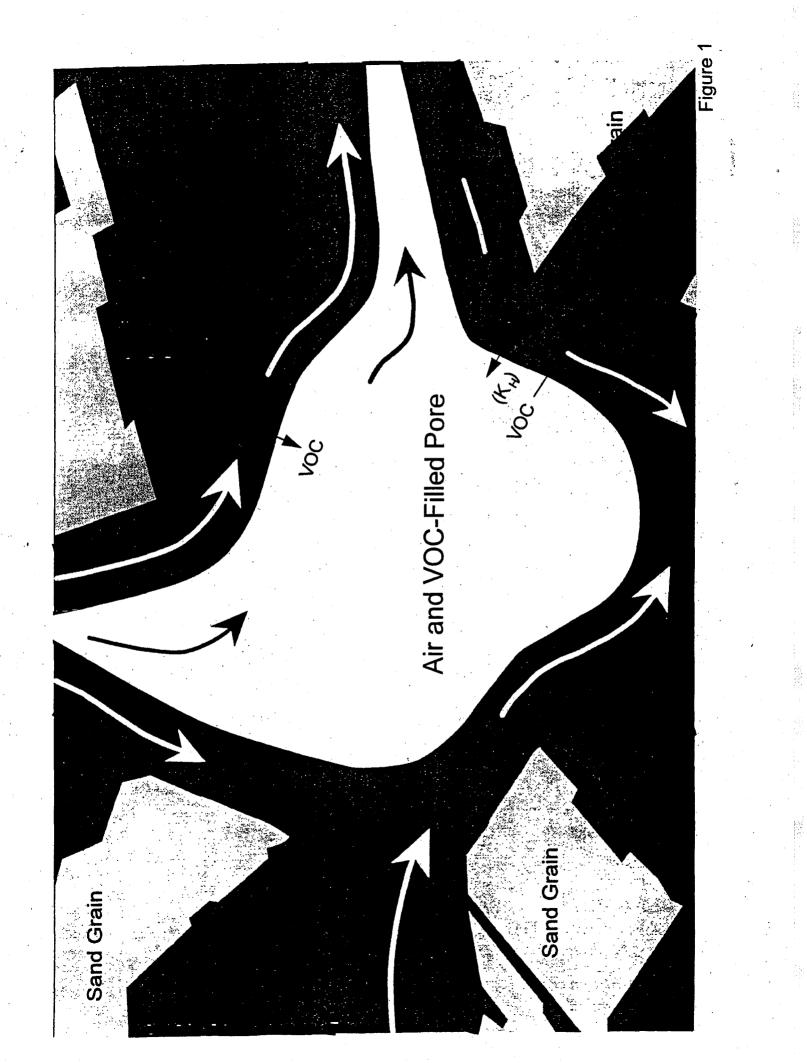
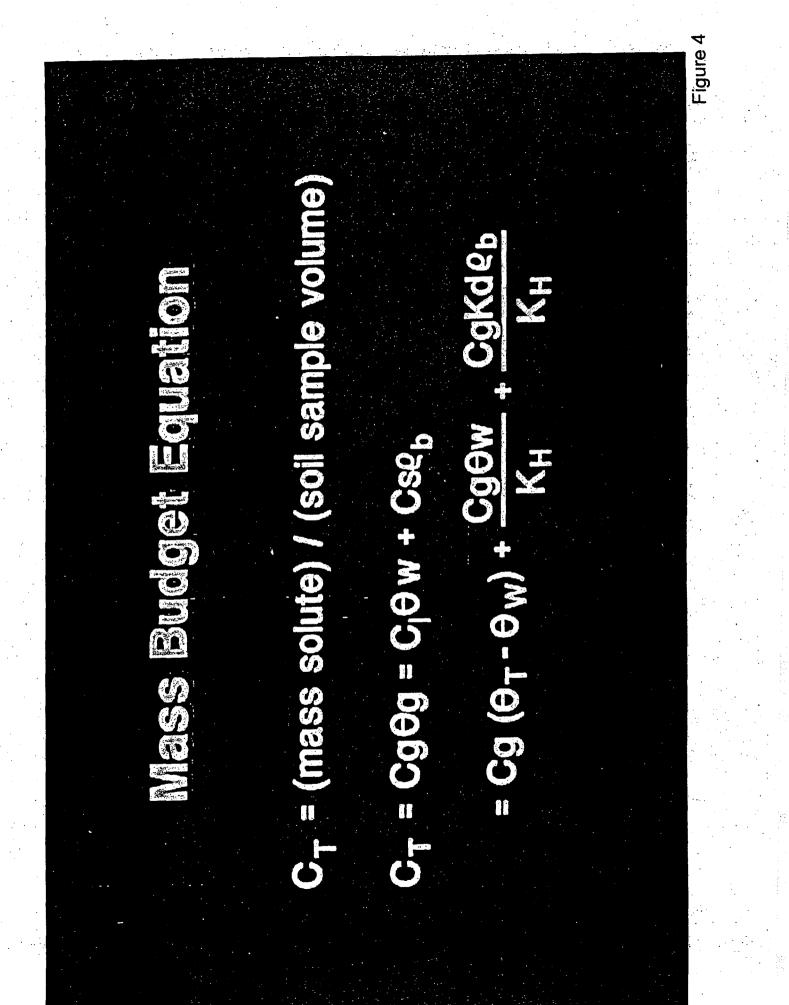
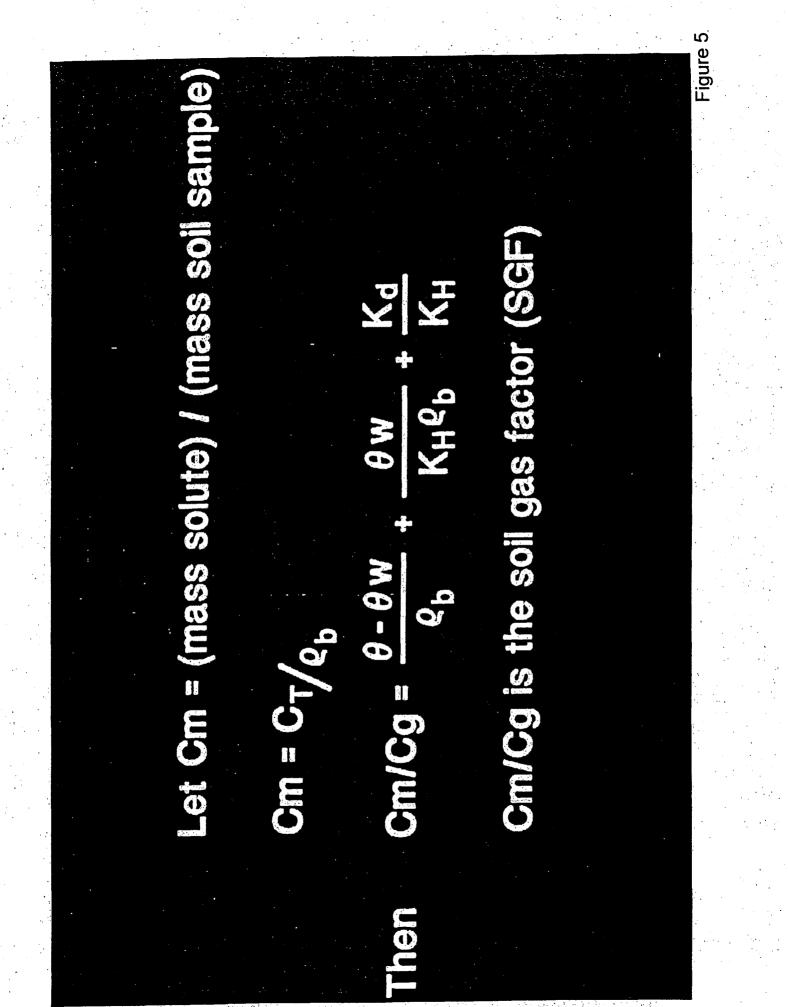

(3)

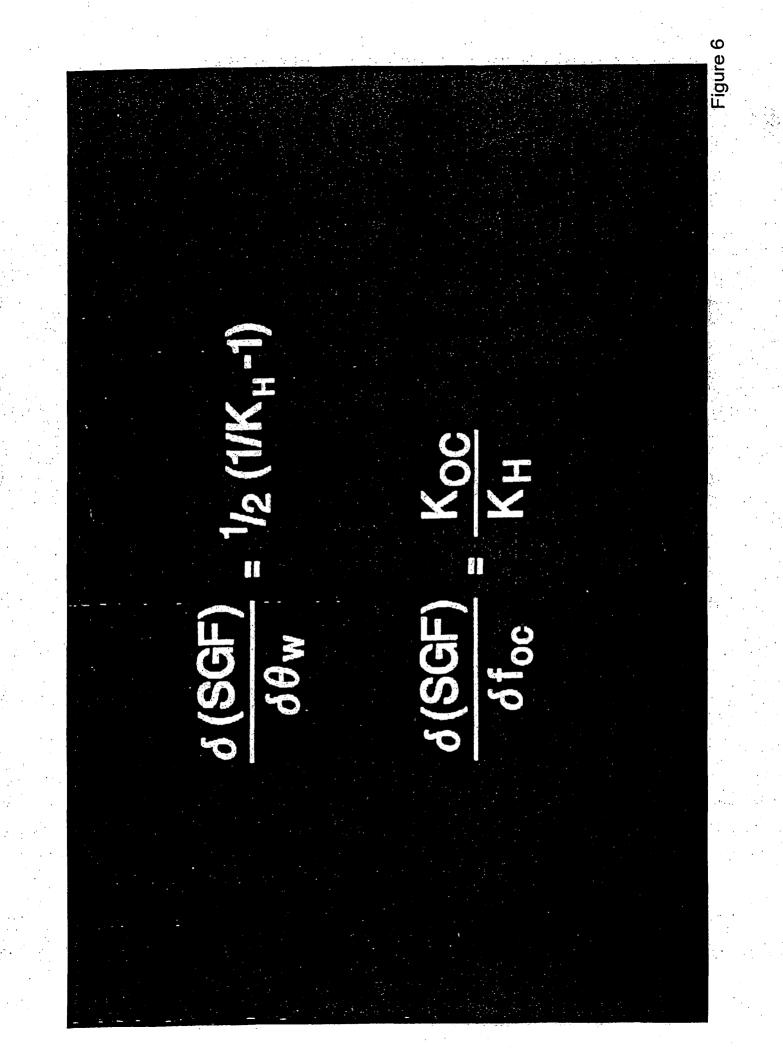
TABLE	E 1. CONVER	SION OF SOIL	GAS TO	TOTAL SOI	CONCENTRA		
COMPOUND	K _{oc} (ml/g)	Henry's Coeff. (H)	H _⊳ * (H/RT)	K _o . (ml/g)	SGas-Soil Conversion Factor	Soil Gas Conc. (µg/L)	Soil Conc. (µg/Kg
CCl ₄	110	2.41E ⁻²	1.0	0.55	0.75	100	75
Chloroform	31	2.87E ⁻³	0.119	0.155	2.24	100	224
1,1 DCA	30	4.31E ⁻³	0.179	0.15	1.50	100	150
1,2 DCA	14	9.78E ⁻⁴	0.0407	0.07	. 10.2	100	1020
1,1 DCE	65	3.40E ⁻²	- 1.41	0.325	0.401	100	40.1
cis 1,2 DCE	49	7.58E ⁻³	0.315	0.245	1.2	100	120
trans 1,2 DCE	59	6.56E ⁻³	0.273	0.295	1.55	100	155
1,1,1 TCA	155	1.70E ⁻²	0.707	0.775	1.33	100	134
TCE	126	9.10E ⁻³	0.379	0.63	2.03	100	203
PCE	364	2.59E ⁻²	1.08	1.82	1.88	100	18
Vinyl Chloride	57	8.19E ⁻²	3.41	0.285	0.212	100	21.2
Benzene	83	5.59E ⁻³	0.233	0.415	2.31	100	232
Ethyl Benzene	1100	6.43E ⁻³	0.267	5.5	19.4	100	1940
Toluene	300	6.37E ⁻³	0.265	1.5	5.86	100	586
Xylene	240	7.04E ⁻³	0.293	1.2	4.53	100	453

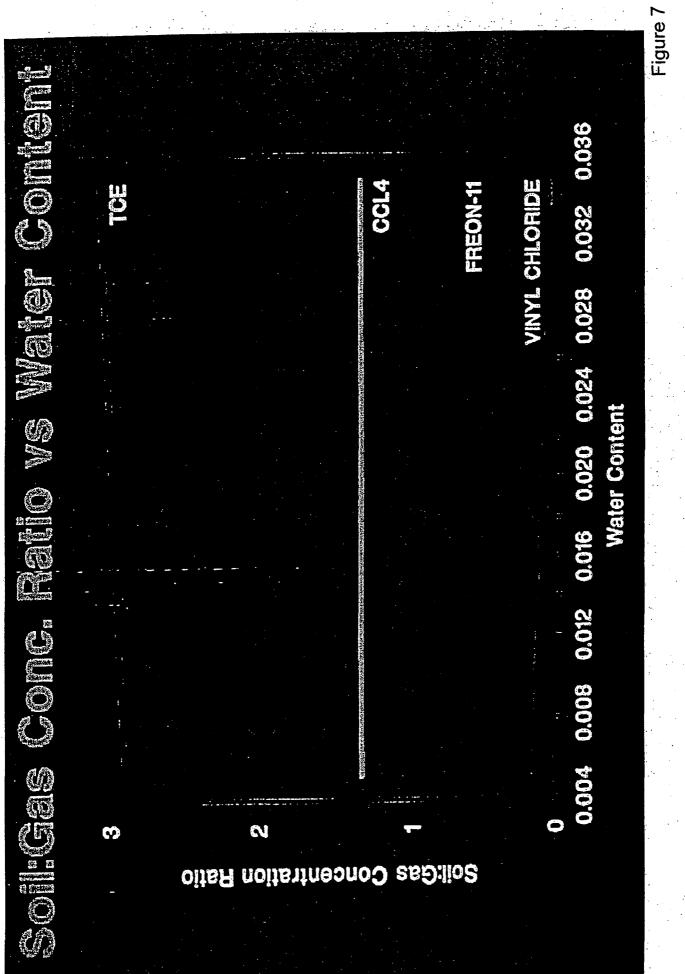
* Roy & Griffin, 1989. - 1,1,1 TCA

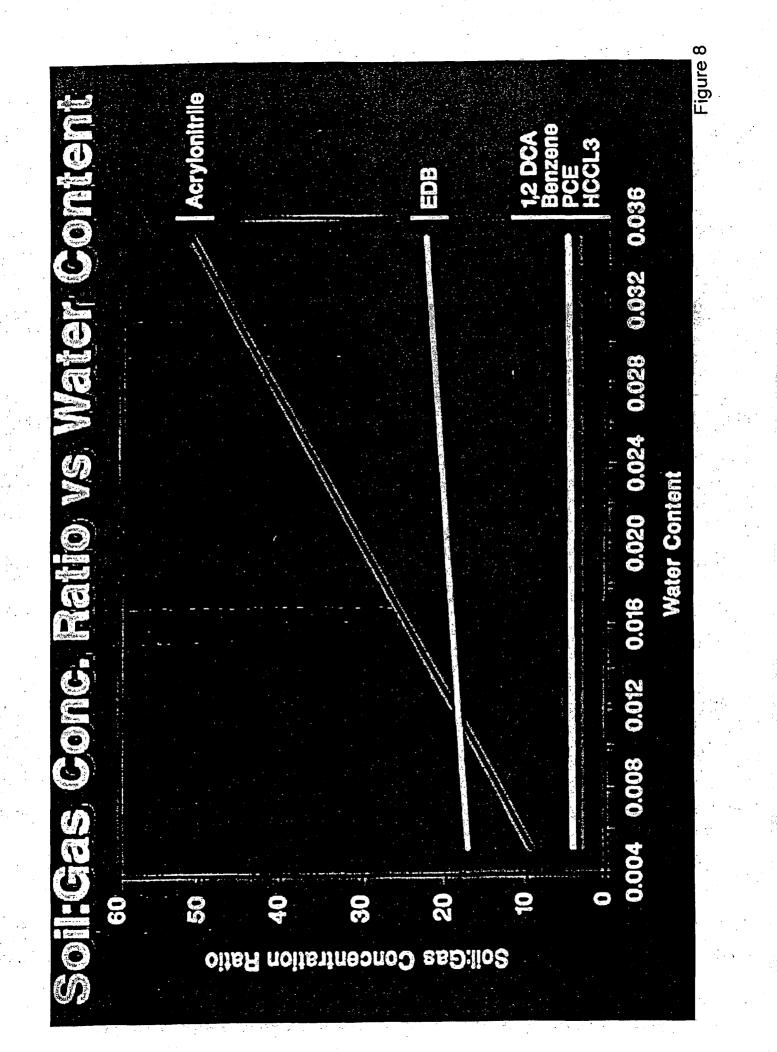
* Montgomery & Welkom, 1990 - all others.

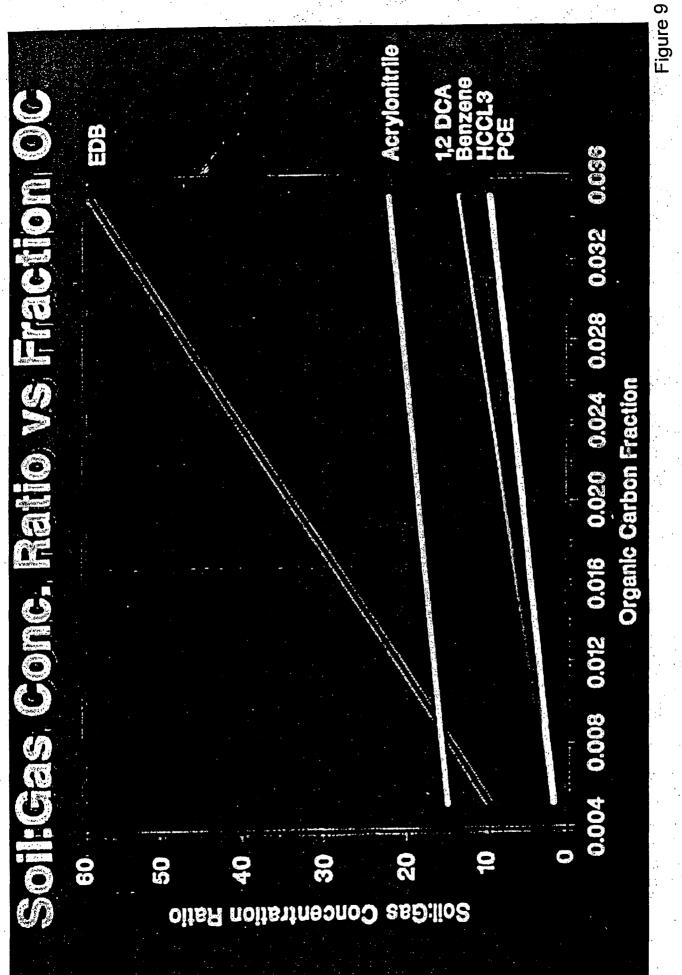

It can be shown by sensitivity analysis of (4) that for all but the most water-soluble compounds, the ratio of soil gas to total soil concentration is most sensitive to K_{D} , next to H_{D} , and that the other parameters have relatively little effect. Thus, for all but the most quantitative applications, the soil parameter important in calculating the conversion of soil gas concentration to total soil concentration is total organic carbon. Reasonable estimates of moisture content, porosity, and bulk density, the additional soil parameters, will be sufficient for most purposes.

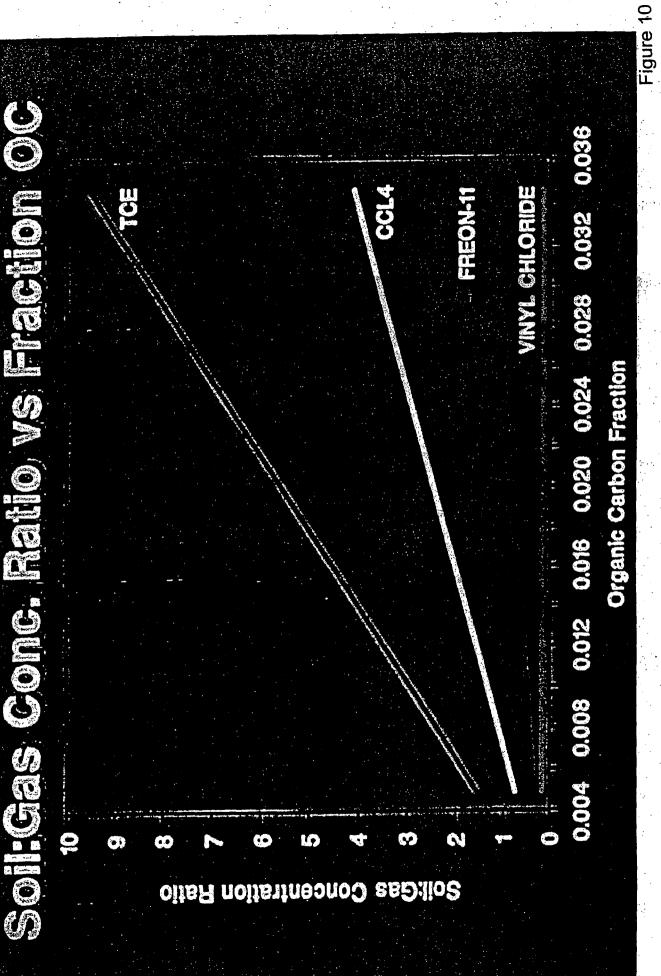


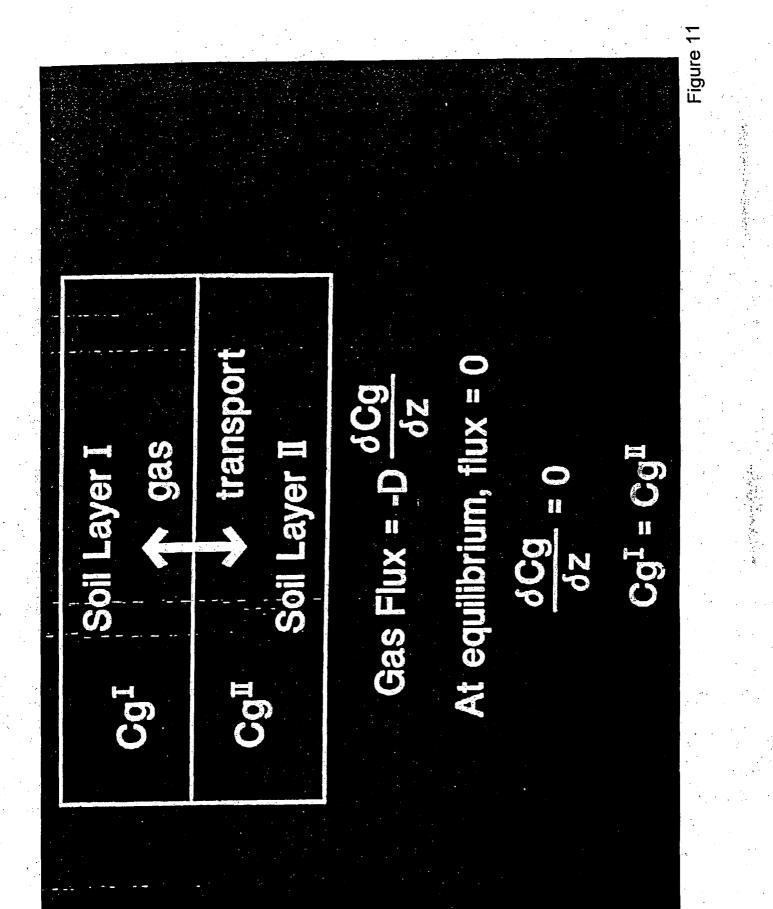

0	in soi I		Figure 2
<pre> Koc • fo </pre>	carbon distribution coefficient of organic carbon (by weight) i		HYDRO GEO GEI
ter Distribution oil Organic Conten $C_{s}/C_{w} = K_{sw} = K_{D} \approx K_{oc}$	tribution c carbon (b	l/gm 10 ⁻¹ ml/gm	3 ml/gm
er Disti oil Orge c _s /c _w =	carbon distributio	<pre><cre><code 150="" <="" m <="" pre=""></code></cre></pre> <pre><code 150="" <="" m <="" pre=""><pre><code <<="" td=""><td>o ≈ 4 × 10 • • 0.005 10 • • 20 ml</td></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre></code></pre>	o ≈ 4 × 10 • • 0.005 10 • • 20 ml
	organic iraction	х° х	
Solid- Depends o y represented as:	Koc is foc is t	E E E	chlorobenzene
Jsually re	/here	xamples	exachlor


eresi


Mel						HYDRO GEO CHEM, IN Figure 3
ribution by Henry's I		Constan	³ (gas)	(water)		HVDRO
Hydn	$K_{gw} = H_D \approx \varrho_s/S$	liess Henry's Law Constan vapor density	5 gm/m ³	S = 1100 mg/l (v C _g /C _w = 0.38	S≈1×10 ⁻⁷ cm/m ^S S⊂1×10 ⁻⁷ cm/m ^S S⊂1515×10 ⁻² n(c)/	
ributio	= Kgw =	liess Henry's L vapor density	solubility e _s = 415	S = 110 Cg/Cw		
	Cg/Cw	sion	TCE		OUCZUG	
as-Water		H _D is d es is s	o Is a nples:		લોગાલો	
Gas	· ··· - · · -		Exan			







2. Predicting the Presence of NAPL from Soil Gas Concentrations

Equation 4 is valid in most soil gas applications, but can under predict a total soil concentration in cases where a separate non-aqueous liquid phase is present. The total VOC soil concentration is then a function of the VOC concentration in the NAPL and the amount of NAPL in the soil. In such a case, although Equation 4 continues to account for the VOC's partitioned into soil, water, and soil gas, it does not account for the VOCs dissolved in the NAPL. Where NAPL is present, the prediction of VOC soil concentrations from soil gas concentrations is not possible because the vapor pressure of a VOC in the NAPL is a function of its concentration in the NAPL and the amount of NAPL is generally unknown.

When a VOC concentration in the NAPL is high, its distribution between the NAPL and the gas phase can be estimated by Raoult's Law

 $C_g(i) = \rho_s X_i$

where and ρ_s is the vapor density (pure-compound vapor pressure) of the ith VOC X_i is the mole fraction of the ith VOC

(5)

(6)

(7)

The sum of the mole fractions of compounds making up a NAPL (or any liquid) is equal to 1:

$$\sum_{i=1}^{n} X_i = 1.0$$

Where n is the number of compounds in the NAPL.

Assuming the NAPL is composed of VOCs, that is, each of the dissolved compounds has a reasonable vapor pressure, the substitution of (5) into (6) yields

1

$$\sum_{i=1}^{n} \frac{C_{g}(i)}{\rho_{s}(i)} -$$

Thus, in a soil NAPL zone where the NAPL is composed entirely of VOCs, the sum of the quotients of soil gas concentrations divided by their respective pure-compound vapor pressure should approach 1. However, a lower than the theoretical value of 1.0 for the summation in (7) should be used to indicate the presence of a NAPL in unsaturated soils. In water saturated soils, because of attenuation by advective and diffusive processes, only 1% of the saturated solubility of a groundwater contaminant is the criterion used to determine the presence of NAPL in groundwater (Feenstra and others, 1991), Soil gas is less likely to be attenuated by advective processes, and the diffusive transport of a gas borne compound is much more effective than that of a compound dissolved in water, both processes leading to a larger zone of detection for soil gas sources. Thus a larger criterion than the 1% of the

c;\info.doc\sgs soil.cnv

theoretical value is appropriate. We suggest, based on observations at a number of soil gas sites, that 10% of the theoretical value be used to determine that a NAPL as present at a soil gas sampling location. The appropriate criterion, therefore, is

$$\sum_{i=1}^{n} \frac{C_g(i)}{\rho_S(i)} \ge 0.1$$

(8)

As an example of the use of this criterion, suppose that the soil gas data obtained at a point location are

PCE	= 2,500 µg/L
TCE	= 4,200 µg/L
Cis 1,2-DCE	= 10,000 µg/L

The calculations utilizing Equation 8 are summarized in Table 2.

	TABLE 2. EXAMPLE OF USING SOIL GAS TO DETERMINE NAPL PRESENCE						
Soil Gas nalyte	Vapor Pressure (mm) (@20 °C)	Molecular Weight (g)	Conversion Factor [µg/(mm· L·g)]	Vapor Density ρ _s (μg/L)	Observed Concentration C _g (µg/L)	C _g /ρ _s	
PCE	14	165.8	54.7	127,000	2,500	0.02	
TCE	19	131.4	54.7	137,000	4,200	0.03	
1,2 cis DCE	180	97	54.7	955,000	10,000	0.01	
	·				SUM of C_g/ρ_s	0.06	

According to this calculation, the soil gas concentrations divided by their respective pure-solvent vapor pressures sum to less than 0.1. Thus NAPL is not present where this soil gas probe was located, and the con-centrations of PCE, TCE, and 1,2 cis DCE at this location can be calculated by the methods summarized in Table 1.

References

Chiou, C.T. and T.D. Shoup, Environ. Sci. Technol. 1985, 19, 1196.

Feenstra, S., D.M. McKay, and J.A.Cherry, 1991. A method for assissing residual NAPL based on organic concentrations in soil samples

Use of Soil Gas to Determine The Presence of NAPLs in Soils

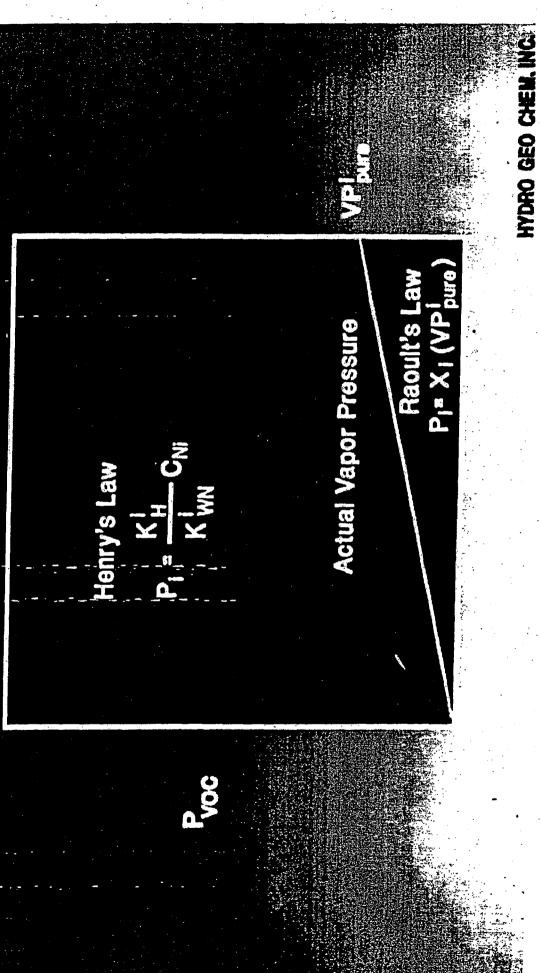
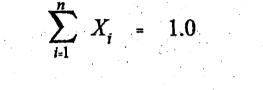
When a VOC concentration in the NAPL is high, its distribution between the NAPL and the gas phase is described by Raoult's Law

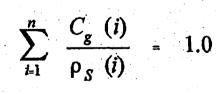
 $C_g(i) = \rho_S X_i$

where ρ_s is the vapor density of the ith VOC and X_i is the mole fraction of the ith VOC

Figure 12

999 A S


Figure 13

The sum of the mole fractions of compounds dissolved in a NAPL (or any liquid) is equal to 1:

Where n is the number of compounds in the NAPL.

Assuming the NAPL is composed of VOCs, that is, each of the dissolved compounds has a reasonable vapor pressure, these two equations may be combined as:

A lower value than the theoretical value of 1.0 should be used to determine that a NAPL is present. The lower value is appropriate for much the same reason that only 1% of the saturated solubility of a groundwater contaminant is used to determine the presence of NAPL in groundwater (Feenstra et al., 1992).

The choice of the proper value is somewhat arbitrary. A larger value than the 1% used for groundwater is reasonable because soil gas components are less likely than groundwater solutes to be attenuated by advective processes and because the diffusivity of a gas borne compound, which widens the area of detection, is much greater than that of a compound dissolved in water. We suggest, based on observations at a number of soil gas sites, that 10 % of the theoretical value be used to determine that a NAPL is present at a soil gas sampling location. The appropriate criterion is

The Presence of NAPL Is Indicated By : $\sum_{i=1}^{n} \frac{C_{g}(i)}{O_{-}(i)} \ge 0.1$

Figure 16

APPENDIX C

Coordinates Requested by UDEQ

Approximate Coordinates Misc. Features - White Mesa Mill Site

Revised using 2001 Topographic Map (all coordinates are approximate)

Feature	Easting Northing E	levation		Tailings C	cells - App	proximate	Boundaries
Water Well #1	2580084 323314			Cell No.	Easting	Northing	
Test Well	2580945 322687						
	•	· · · ·		1-1			
Jones Well	2581252 318910				2577460	323190	
Jet Pump	2581250 329460				2579365	323145	
				-	2579355	322078	
Ruin Spring	2574294 310375	5391			2576795	322150	1
Cottonwood Spring	2570024 317880	5238		, A	2576880	322415	
Westwater Spring	2574166 321692	5493		· •			
				2			
Former Leach Field	l (near office)	Dimensions (f	t. x ft.)	NW	2576795	322150	
NW	2580274 322228		; ·	NE	2580210	322040	
NE	2580369 322228	95	100	SE	2580210	320745	
SE	2580369 322128			SW	2576845	321680	
SW	2580274 322128	Area (sq.ft.)	9500				
	•			3			÷ .
Old Leach Field (sc	ale house)	Dimensions (fl	L x ft.)	NW	2576845	321680	
NW	2580765 322279			NE	2580210	320745	
NE	2580786 322279	21	56	SE	2579593	320100	
SE	2580786 322223			SW	2576015	320825	
ŚW	2580765 322223	Area (sq.ft.)	176				
				4A			
Current Leach Field	d (east of Mill yard)	Dimensions (ft	i. x ft.)	NW	2577883	320411	
NW	2581224 322530			NE	2579593	320100	
NE	2581324 322530	100	160	SE	2578860	319021	
SE	2581324 322370			SW	2577469	319266	
SW	2581224 322370	Area (sq.ft.) 16	000				
Land Fill		Dimensions (ft	. x ft.)				
NW	2581040 322915		·				
	2581115 322915	75	130				
	2581115 322785						
	2581040 322785	Area (sq.ft.) 9	750				
Sedimentation Pond	4						
Seomentation Fond	2570420 322645						

(all coordinates are approximate)

	io ,
NW	2579420 322645
NE	2579465 322645
Α	2579465 322400
В	2579555 322355
SE	2579555 322175
SW	2579420 322175

Lab Waste Holding Tank

2580085 322408

Abandoned Monitor Wells, Bore Holes, and Angle Holes

Feature	Easting	Northing	Elevation
MW-13	2577590	319547	5570
MW-6-1	2578895	320530	5588
MW-6-2	2578895	320530	5588
MW-7-1	2578125	320886	5588
MW-7-2	2578125	320886	5588
MW-8-1	2577265	320925	5590
MW-8-2	2577265	320925	5590
	1. 1910 - Maria		
D&M 3	2580092	322720	5634.3
D&M 9	2581380	327365	5679.3
GH-94-1	2576459	320549	5597
GH-94-2/	2577257	320385	5585
GH-94-3	2577245	320046	5579
GH-94-4	2577365	319598	5572
D & M 12	2578314	326932	5648.1
D & M 28	2577380	317340	5547.6

間周

APPENDIX D

122226

Analytical Results

Daver Central Files Copy.

ENERGY LABORATORIES, INC.

SHIPPING: 2393 SALT CREEK HIGHWAY • CASPER, WY 82601 MAILING: P.O. EOX 3258 • CASPER, WY 82602 E-mail: casper@energylab.com • FAX: (307) 234-1639 PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

LABORATORY ANALYSIS REPORT

Client: INTERNATIONAL URANIUM (USA) CORPORATION

Project: White Mesa Mill

Contact: Wally Brice

Sample Matrix: Liquid, Water

Date Received: 04-02-01

Report Date: April 9, 2001

Laboratory ID	Sample Date / Time	Sample ID	Nitrate + Nitrite as N, mg/L
01-31914-1	03-26-2001 14:02	WMMTW4-11	< 0.10
01-31914-2	03-26-2001 15:49	WMMTW4-15	< 0.10
01-31914-3	03-29-2001 11:08	WMMTW4-12	10.0
01-31914-4	03-29-2001 12:38	WMMMW4	8.77

WMMTW4-11 is a field black (DI Black). WMMTW4-15 is a rinsate of pupp. syst. prior to collection of CIW samples.

TRACTING NO. FACE NO.

31914R08702

WMMTW4-10, is a Dig. WMME4-12.

Quality Assurance Data	
Method	EPA 353.2
Reporting Limit	0.10
RPD ¹	1.0
Spike ²	96
Analyst	rwk
Date/Time Analyzed	04-04-2001 17:13

NOTES:

 These values are an assessment of analytical precision. The acceptance range is 0-20% for sample results above 10 times the reporting limit. This range is not applicable to samples with results below 10 times the reporting limit.

(2) These values are an assessment of analytical accuracy. They are a percent recovery of the spike addition. ELI performs a matrix spike on 10 percent of all samples for each analytical method.

msh: r:\reports\clients2001\international_uranium_corp\liquid\31914-1-4.xls

COMPLETE ANALYTICAL SERVICES

		ERG RATORII		• Ca	llings asper illette apid City		NERGY Mail O FedEx De	nly:	RATORIES, INC PO Box 3258 • 2393 Salt Creel	Ca	sper, W	Y •		2-3258	ORD 826	01		voice	-888-235-0515 307-235-0515 307-234-1639
P	roject	Name /	Loc	ation	/ Purcha	se Ord	er# / H	Bid #	ne and Telephone #	"s as In	2 ther			K OF F	<u>.</u>		AMPLE	Specia	STRUCTIONS) Il Requests
1									UT 8451	containers	W S V U O Vegetation <u>U</u> rine <u>(</u>							5°C	14
	Date	Time	composite .	grab sample	Send Invoi	ice to:	TUC PO Bo Bland	x Bo Mine Mine	As Above	Alimbar of	Aumuer of c Sample Type: A Mater Soils/solids <u>V</u> eg	Vitutes	By 60 (CHUS)					•	ents, Special actions, etc.
	3/24/01	140Z		~	LOMMT	TW4		•	nm CTW 15 14 01 Wate	3	کل ا		••						
		1549		~	10MM T														
	2/2401 3/29/0	1238			WMMT				,		1	¥.					0		
ľ	3/10/01	1					L	-824	08(CHC13)	12	Y-W		V	Th	io.	isi	Vrip	Blank	. toffe
			-	ļ					·	·	. <u></u> .		Ø.	the	et.	10	1 al	other	
ن 		ļ																T.H.F	03 Apr 01
				<u> </u>				.'					<u> </u>	}	<u>.</u>				
							······			_									
, • , , , ,	(;;; Sam (;;) a.	ipter: (sign Ily Bri	ature))		Date	Time		Received by: (signature	e)	2. Rel	inquished	by: (sig	nature)	Dat	le	fime	Received	l by: (signature)
	3. Reli	inquished t	ny: (si	gnatur	re) E	Date	Time		Received by: (signatur	e)	4. Re	tinquishe	d by: (siį	gnature)	Dai 2 A D	ie At//	Time 7. Od		n Laboratory by: signature

 $\mathcal{V}_{\mathcal{A}}(\mathcal{A}_{\mathcal{A}}) =$

이 이야 한 이 이 상황된 것 같아.

Energy Laboratories, Inc. SAMPLE CONDITION REPORT

This report provides information about the condition of the sample(s), and assocated sample custody information on receipt at the laboratory.

Client: International Uranium (USA) CorporationDescription: WATERLab ID(s): 01-31914-1Thru 01-31914-4Matrix: LiquidDelivered by: upsDate&Time Rec'd: 02-APR-01 1000Date&Time Col'd: 26-MAR-01 1402Received by: Sara HawkenLogged In by: Sara Hawken

Chain of custody form completed & signed:	Yes	Comments:
Chain of custody seal:	No	Comments:
Chain of custody seal intact:	N/A	Comments:
Signature match, chain of custody vs. seal:	N/A	Comments:
Sample received Temperature:	5C	Comments:
	Yes	Comments:
Samples received in proper containers:	Yes	Comments:
Samples Properly Preserved:	Yes	Comments:

Bottle Types Received: 4-16oz p nf h2so4

Comments:

TRACIUM POL FACE NO. 31913700004

Energy Laboratories, Inc.

REPORT PACKAGE SUMMARY - FINAL PAGE

Acronyms and Definitions

ELI-B Energy Laboratories, Inc. - Billings, Montana ELI-G Energy Laboratories, Inc. - Gillette, Wyoming ELI-H Energy Laboratories, Inc. - Helena, Montana ELI-R Energy Laboratories, Inc. - Rapid City, South Dakota co - Carry over from previous sample ip - Insufficient parameters N/A - Not Applicable NA - Not Analyzed ND - Analyte Not Detected at Stated Limit of Detection NR - Analyte Not Requested NST - No Sample Time Given NSD - No Sample Date Given

This Package Contains the following Client ID(s) and Lab ID(s)

Client ID: WMMMW4 is associated to Lab ID: 01-31914-4 Client ID: WMMTW-11 is associated to Lab ID: 01-31914-1 Client ID: WMMTW-12 is associated to Lab ID: 01-31914-3 Client ID: WMMTW-15 is associated to Lab ID: 01-31914-2

Approved By:

à.

مادى دى كا مايارىمى مىسامىلامىت ۋىدىمىرى

Reviewed By:

ENERGY LABORATORIES, INC.

SHIPPING: 2393 SALT CREEK HIGHWAY • CASPER, WY 82601 MAILING: P.O. EOX 3258 • CASPER, WY 82602 E-mail: casper@energylab.com • FAX: (307) 234-1639 PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

LABORATORY ANALYSIS REPORT

Client: INTERNATIONAL URANIUM (USA) CORPORATION

Project: White Mesa Mill

Contact: Wally Brice

Sample Matrix: Liquid, Water

Date Received: 04-02-01

Report Date: April 9, 2001

Laboratory ID	Sample Date / Time	Sample ID	Nitrate + Nitrite as N, mg/L
01-31913-1	03-29-2001 09:32	WMMTW4-1	7.15
01-31913-2	03-29-2001 11:08	WMMTW4-2	10.2
01-31913-3	03-28-2001 17:35	WMMTW4-3	1.85
01-31913-4	03-27-2001 09:02	WMMTW4-4	14.5
01-31913-5	03-28-2001 11:04	WMMTW4-5	3.88
01-31913-6	03-26-2001 16:20	WMMTW4-6	0.13
01-31913-7	03-27-2001 14:56	WMMTW4-7	2.46
01-31913-8	03-27-2001 16:54	WMMTW4-8	< 0.10
01-31913-9	03-27-2001 11:20	WMMTW4-9	< 0.10
01-31913-10	03-26-2001 14:01	WMMTW4-10	< 0.10
		A TANK DO & ALL	

WMM TW4-10 is a Thip Blank (WMM chem Lab DIBlank).

TRACKETO DOL FACE NO.

913368381

Quality Assurance Data				
Method	EPA 353.2			
Reporting Limit	0.10			
RPD ¹	0.8			
Spike ²	94			
Analyst	rwk			
Date/Time Analyzed	04-04-2001 15:30			

NOTES:

 These values are an assessment of analytical precision. The acceptance range is 0-20% for sample results above 10 times the reporting limit. This range is not applicable to samples with results below 10 times the reporting limit.

(2) These values are an assessment of analytical accuracy. They are a percent recovery of the spike addition. ELI performs a matrix spike on 10 percent of all samples for each analytical method.

msh: r:\reports\clients2001\international_uranium_corp\liquid\31913-1-10.xls

COMPLETE ANALYTICAL SERVICES

							٢	1913
<u>ENERGY</u> :	Casper Mc	RGY LABORATORIES nil Only: PO Box 325 x Deliveries: 2393 Sal		WY •	82602-325			toll free 1-888-235-0515 voice 307-235-0515 fax 307-234-1639
For Sample Tracking Pu		Contact Name and Telep	hone #'s as Indicate	d (SE	E BACK OF	FORM FOR	EXAMPLE	S AND INSTRUCTIONS)
Project Name / Location	/10-125 S. Heory. K	1 Bid # Al Blanding, UT B	ers U O Jrine Other		Type of Ana	yses Request	ed	Special Requests
Wully Brice /	(435) 678-727 Send Invoice to: 7	21/(435)678-2	of contain A W S V					
Date Time du os	B A	sox 809 landing, UT 845:1 Hn: Ron Berg Mane As Aboute	Number of containers Sample Type: A W S V U O Air Water Solis/solids <u>Vegetation Urine Oth</u>	Nitrates				
°	1	Sample I.D. WMMCIN	4. 10. X.	2				Comments, Special
3/25/01 0932 V	IJMMTW4-1	Nitrate		-				
3 29 01 1108 V	WMMTW42							
3/2801 1735 V	WMMTW4-3	· · · · · · · · · · · · · · · · · · ·		-			-	
27 01 0902 V	WMMTTW4-4							· · ·
3/18 1104 1	WMMTTWH-5							
3/24 5620 1	WMMTW4-4							
3/17/01456 1	WMMTW4-7	.	· ·					
B/27/01 1454 1	WMMTWH-B	1						
3/27/01/120	WMMTW 4-9			-				
3/16/1401	WMMTW4-10				<u> </u>			
1				·····				
$\frac{1}{1}$ 1. Sampler: (signature)	Date Tir	ne Received by: (s	ignature) 2. R	elinquished	by: (signature) Date	Time	Received by: (signature)
Welly Brug	3/30/01 100	0		· · · ·				
3. Relinquished by: (signa	iture) Date Ti	me Received by: (s	signature) 4. 1	Relinquishe	d by: (signatur	e) Date	Time	Received at Laboratory by:
						2.Anoi	10.00	() isignature) Ha (-X/a O/C)
1						1		

13992

.)

()

.

20**7**2077 2000 -

39.8

Energy Laboratories, Inc. SAMPLE CONDITION REPORT

This report provides information about the condition of the sample(s), and assocated sample custody information on receipt at the laboratory.

Client: International Uranium (USA) CorporationDescription: WATERLab ID(s): 01-31913-1Thru 01-31913-10Matrix: LiquidDelivered by: upsDate&Time Rec'd: 02-APR-01 1000Date&Time Col'd: 29-MAR-01 0932Received by: Sara HawkenLogged In by: Sara Hawken

Chain of custody form completed & signed:	Yes	Comments:
Chain of custody seal:	No	Comments:
Chain of custody seal intact:	N/A	Comments:
Signature match, chain of custody vs. seal:	N/A	Comments:
Sample received Temperature:	5C	Comments:
Samples received within holding time:	Yes	Comments:
Samples received in proper containers:	Yes	Comments:
Samples Properly Preserved:	Yes	Comments:

Bottle Types Received: 10-160z p nf h2so4 (a)

Comments:

TRACKING NO. PAGE NO. 31213703001/

Energy Laboratories, Inc.

REPORT PACKAGE SUMMARY - FINAL PAGE

Acronyms and Definitions

ELI-B Energy Laboratories, Inc. - Billings, Montana ELI-G Energy Laboratories, Inc. - Gillette, Wyoming ELI-H Energy Laboratories, Inc. - Helena, Montana ELI-R Energy Laboratories, Inc. - Rapid City,South Dakota co - Carry over from previous sample ip - Insufficient parameters N/A - Not Applicable NA - Not Analyzed ND - Analyte Not Detected at Stated Limit of Detection NR - Analyte Not Requested NST - No Sample Time Given NSD - No Sample Date Given

This Package Contains the following Client ID(s) and Lab ID(s)

Client ID: WMMTW4-1 is associated to Lab ID: 01-31913-1 Client ID: WMMTW4-10 is associated to Lab ID: 01-31913-10 Client ID: WMMTW4-2 is associated to Lab ID: 01-31913-2 Client ID: WMMTW4-3 is associated to Lab ID: 01-31913-3 Client ID: WMMTW4-4 is associated to Lab ID: 01-31913-4 Client ID: WMMTW4-5 is associated to Lab ID: 01-31913-5 Client ID: WMMTW4-6 is associated to Lab ID: 01-31913-5 Client ID: WMMTW4-6 is associated to Lab ID: 01-31913-7 Client ID: WMMTW4-7 is associated to Lab ID: 01-31913-7 Client ID: WMMTW4-8 is associated to Lab ID: 01-31913-7 Client ID: WMMTW4-8 is associated to Lab ID: 01-31913-8 Client ID: WMMTW4-9 is associated to Lab ID: 01-31913-9

Approved By:

1. S. C. موجود کا میرودی موجود موجود در دوروهومن

Reviewed By:

This is the last page of the Laboratory Analysis Report. Additional QC is available upon request. The report contains the number of pages indicated by the last 43333300005

LABORATORY ANALYSIS REPORT

Client: INTERNATIONAL URANIUM (USA) CORPORATION

Project: White Mesa Mill

Contact: Wally Brice

Sample Matrix: Liquid, Water

Date Received: 04-02-01

Report Date: April 9, 2001

Laboratory ID	Sample Date / Time	Sample ID	Nitrate + Nitrite as N, mg/L
01-31913-1	03-29-2001 09:32	WMMTW4-1	7.15
01-31913-2	03-29-2001 11:08	WMMTW4-2	10.2
01-31913-3	03-28-2001 17:35	WMMTW4-3	1.85
01-31913-4	03-27-2001 09:02	WMMTW4-4	14.5
01-31913-5	03-28-2001 11:04	WMMTW4-5	3.88
01-31913-6	03-26-2001 16:20	WMMTW4-6	0.13
01-31913-7	03-27-2001 14:56	WMMTW4-7	2.46
01-31913-8	03-27-2001 16:54	WMMTW4-8	< 0.10
01-31913-9	03-27-2001 11:20	WMMTW4-9	< 0.10
01-31913-10	03-26-2001 14:01	WMMTW4-10	< 0.10

Quality Assurance Data			
Method	EPA 353.2		
Reporting Limit	0.10		
	0.8		
RPD ¹ Spike ²	94		
Analyst	rwk		
Date/Time Analyzed	04-04-2001 15:30		

NOTES:

(1) These values are an assessment of analytical precision. The acceptance range is 0-20% for sample results above 10 times

the reporting limit. This range is not applicable to samples with results below 10 times the reporting limit.

(2) These values are an assessment of analytical accuracy. They are a percent recovery of the spike addition. ELI performs a matrix spike on 10 percent of all samples for each analytical method.

msh: r:\reports\clients2001\international_uranium_corp\liquid\31913-1-10.xls

LABORATORY ANALYSIS REPORT

Client: INTERNATIONAL URANIUM (USA) CORPORATION

Project: White Mesa Mill

Contact: Wally Brice

Sample Matrix: Liquid, Water

Date Received: 04-02-01

Report Date: April 9, 2001

Laboratory ID	Sample Date / Time	Sample ID	Nitrate + Nitrite as N, mg/L
01-31914-1	03-26-2001 14:02	WMMTW4-11	< 0.10
01-31914-2	03-26-2001 15:49	WMMTW4-15	< 0.10
01-31914-3	03-29-2001 11:08	WMMTW4-12	10.0
01-31914-4	03-29-2001 12:38	WMMMW4	8.77

	Quality Assurance Data	
Method		EPA 353.2
Reporting Limit		0.10
RPD ¹		1.0
Spike ²		96
Analyst		rwk
Date/Time Analyzed		04-04-2001 17:13

NOTES:

 These values are an assessment of analytical precision. The acceptance range is 0-20% for sample results above 10 times the reporting limit. This range is not applicable to samples with results below 10 times the reporting limit.

(2) These values are an assessment of analytical accuracy. They are a percent recovery of the spike addition. ELI performs a matrix spike on 10 percent of all samples for each analytical method.

msh: r:\reports\clients2001\international_uranium_corp\liquid\31914-1-4.xls

Client: Project:	International Uranium (USA) Corporation WHITE MESA MILL	Date Sampled: 03-29-01 Time Sampled: 09:50
Sample ID:	WMMTW4-1	Date/Time Received: 04-02-01 10:00
Laboratory ID:	01-31916-1	Date Analyzed: 04-04-01
Matrix:	Liquid - WATER	Date Reported: April 12, 2001
Dilution Factor:	200	

C.A.S. #	TARGET COMPOUNDS	CONCENTRATION (µg/L)	REPORT LIMIT (µg/L)
67-66-3	Chloroform (Trichloromethane)	2,340	100

ND - Analyte not detected at stated limit of detection

RUNTIME QUALITY ASSURANCE REPORT					
		ICAL / CCAL	PERCENT	ACCEPTANCE	
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE	
Pentafluorobenzene	1166070	1150521	101%	50 - 200 %	
Fluorobenzene	2433645	2388861	102%	50 - 200 %	
1,4 - Difluorobenzene	1769122	1775533	99.6%	50 - 200 %	
Chlorobenzene - d5	1189063	1163446	102%	50 - 200 %	
1,4 - Dichlorobenzene - d4	473744	458787	103 %	50 - 200 %	

SYSTEM MONITORING COMPOUNDS	CONCENTRATION	PERCENT RECOVERY	ACCEPTANCE RANGE
Dibromofluoromethane	9.45	94.5%	86 - 118 %
Toluene - d8	10.3	103%	88 - 110 %
4 - Bromofluorobenzene	9.91	99.1%	86 - 115 %
1,2 - Dichlorobenzene - d4	9.90	99.0%	80 - 120 %

METHODS USED IN THIS ANALYSIS: EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_l-w.xls

Analyst:

rlo

Client:	International Uranium (USA) Corporation	Date Sampled:	03-29-01
Project:	WHITE MESA MILL	Time Sampled:	11:12
Sample ID:	WMMTW4-2	Date/Time Received:	04-02-01 10:00
Laboratory ID:	01-31916-2	Date Analyzed:	04-04-01
Matrix:	Liquid - WATER	Date Reported:	April 14, 2001
Dilution Factor:	200		

C.A.S. # TARGET COMPOUNDS	CONCENTRATION (µg/L)	REPORT LIMIT (µg/L)
67-66-3 Chloroform (Trichloromethane)	3,890	100

ND - Analyte not detected at stated limit of detection

RUNTIME QUALITY ASSURANCE REPORT					
		ICAL / CCAL	PERCENT	ACCEPTANCE	
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE	
Pentafluorobenzene	1154034	1150521	100%	50 - 200 %	
Fluorobenzene	2407856	2388861	101%	50 - 200 %	
1,4 - Difluorobenzene	1752960	1775533	98.7%	50 - 200 %	
Chlorobenzene - d5	1171985	1163446	101%	50 - 200 %	
1,4 - Dichlorobenzene - d4	471262	458787	103%	50 - 200 %	

SYSTEM MONITORING COMPOUNDS	CONCENTRATION	PERCENT RECOVERY	ACCEPTANCE RANGE
Dibromofluoromethane	9.36	93.6%	86 - 118 %
Toluene - d8	10.3	103%	88 - 110 %
4 - Bromofluorobenzene	9.93	99.3%	86 - 115 %
1.2 - Dichlorobenzene - d4	9.88	98.8 <i>%</i>	80 - 120 %

METHODS USED IN THIS ANALYSIS:

EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_l-w.xls

Analyst:

rlo

Client:	International Uranium (USA) Corporati	on	Date Sampled:	03-28-01	
Project:	WHITE MESA MILL	•	Time Sampled:	17:56	
Sample ID:	WMMTW4-3		Date/Time Received:	04-02-01 10:00	
Laboratory ID:	01-31916-3		Date Analyzed:	04-04-01	
Matrix:	Liquid - WATER	· ·	Date Reported:	April 14, 2001	
Dilution Factor:	100				

C.A.S. # TARGET CO		CONCENTRATION (µg/L)	REPORT LIMIT (µg/L)
67-66-3 Chloroform	(Trichloromethane)	347	50.0

ND - Analyte not detected at stated limit of detection

	RUNTII	ME QUALITY ASSURANC	E REPORT	
<u></u>	· · · ·	ICAL / CCAL	PERCENT	ACCEPTANCE
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE
Pentafluorobenzene	1158619	1150521	101 %	50 - 200 %
Fluorobenzene	2404030	2388861	101%	50 - 200 %
1.4 - Difluorobenzene	1745382	1775533	98.3%	50 - 200 %
Chlorobenzene - d5	1175904	1163446	101 %	50 - 200 %
1,4 - Dichlorobenzene - d4	472736	458787	103%	50 - 200 %
		CONCENTRATION	PERCENT RECOVERY	ACCEPTANCE
SYSTEM MONITORING CO	UMPOUNDS			RANGE
Dibromofluoromethane		9.48	94.8%	86 - 118 %

pierenter			
Toluene - d8	10.3	103%	88 - 110 %
4 - Bromofluorobenzene	10.1	101%	86 - 115 %
1,2 - Dichlorobenzene - d4	9.85	98.5%	80 - 120 %

METHODS USED IN THIS ANALYSIS:

EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_I-w.xls

Analyst:

rio

J

Client:	International Uranium (USA) Corporation	Date Sampled:	03-27-01
Project:	WHITE MESA MILL	Time Sampled:	09:00
Sample ID:	WMMTW4-4	Date/Time Received:	04-02-01 10:00
Laboratory ID:	01-31916-4	Date Analyzed:	04-06-01
Matrix:	Liquid - WATER	Date Reported:	April 14, 2001
Dilution Factor:	200		

C.A.S. #	TARGET COMPOUNDS	CONCENTRATION (µg/L)	REPORT LIMIT (µg/L)
67-66-3	Chloroform (Trichloromethane)	2,260	100

ND - Analyte not detected at stated limit of detection

		ICAL / CCAL	PERCENT	ACCEPTANCE
NTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE
entafluorobenzene	980162	1150521	85.2%	50 - 200 %
luorobenzene	2227683	2388861	93.3%	50 - 200 %
4 - Difluorobenzene	1572210	1775533	88.5%	50 - 200 %
hlorobenzene - d5	1044788	1163446	89.8%	50 - 200 %
,4 - Dichlorobenzene - d4	410680	458787	89.5%	50 - 200 %
			PERCENT	ACCEPTANCE

SYSTEM MONITORING COMPOUNDS	CONCENTRATION	RECOVERY	RANGE
Dibromofluoromethane	9.83	98.3%	86 - 118 %
Toluene - d8	10.6	106%	88 - 110 %
4 - Bromofluorobenzene	10.6	106%	86 - 115 %
1,2 - Dichlorobenzene - d4	9.92	99.2%	80 - 120 %

METHODS USED IN THIS ANALYSIS:

EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_l-w.xls

Analyst:

rlo

Client:	International Uranium (U	JSA) Corporat	ion	Date Sampled:	03-28-01	
Project:	WHITE MESA MILL			Time Sampled:	11:22	
Sample ID:	WMMTW4-5			Date/Time Received:	04-02-01 10:00	
Laboratory ID:	01-31916-5	•		Date Analyzed:	04-04-01	
Matrix:	Liquid - WATER	•		Date Reported:	April 14, 2001	
Dilution Factor:	10		• 			

C.A.S.#	TARGET COMPOUNDS	CONCENTRATION	REPORT LIMIT (pg/L)
67-66-3	Chloroform (Trichloromethane)	236	5.0

ND - Analyte not detected at stated limit of detection

RUNTIME QUALITY ASSURANCE REPORT				
		ICAL / CCAL	PERCENT	ACCEPTANCE
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE
Pentafluorobenzene	1107374	1150521	96.2%	50 - 200 %
Fluorobenzene	2345208	238 886 1	98.2%	50 - 200 %
1,4 - Difluorobenzene	1698810	1775533	95.7%	50 - 200 %
Chlorobenzene - d5	1159686	1163446	99.7%	50 - 200 %
1,4 - Dichlorobenzene - d4	466834	458787	102%	50 - 200 %

		PERCENT	ACCEPTANCE	
SYSTEM MONITORING COMPOUNDS	CONCENTRATION	RECOVERY	RANGE	
Dibromofluoromethane	9.46	94.6%	86 - 118 %	
Toluene - d8	10.4	104%	88 - 110 %	
4 - Bromofluorobenzene	10.1	101%	86 - 115 %	
1,2 - Dichlorobenzene - d4	9.76	97.6%	80 - 120 %	

METHODS USED IN THIS ANALYSIS:

EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_i-w.xls

Analyst: rlo

Client:	International Uranium (USA) Corporation	Date Sampled:	03-26-01
Project:	WHITE MESA MILL	Time Sampled:	16:30
Sample ID:	WMMTW4-6	Date/Time Received:	04-02-01 10:00
Laboratory ID:	01-31916-6	Date Analyzed:	04-04-01
Matrix:	Liquid - WATER	Date Reported:	April 14, 2001
Dilution Factor:	2		and the second

	TARGET COMPOUNDS	CONCENTRATION (µg/L)	REPORT LIMIT (µg/L)
67-66-3	Chloroform (Trichloromethane)	ND	1.0

ND - Analyte not detected at stated limit of detection

		ICAL / CCAL	PERCENT	ACCEPTANCE
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE
Pentafluorobenzene	1135759	1150521	98.7%	50 - 200 %
Fluorobenzene	2382190	2388861	99.7%	50 - 200 %
4 - Difluorobenzene	1708345	1775533	96.2%	50 - 200 %
Chlorobenzene - d5	1159355	1163446	99.6%	50 - 200 %
1,4 - Dichlorobenzene - d4	467805	458787	102%	50 - 200 %

SYSTEM MONITORING COMPOUNDS	CONCENTRATION	PERCENT RECOVERY	ACCEPTANCE RANGE
Dibromofluoromethane	9.58	95.8%	86 - 118 %
Toluene - d8	10.4	104%	88 - 110 %
4 - Bromofluorobenzene	10.0	100%	86 - 115 %
1.2 - Dichlorobenzene - d4	9.84	98.4%	80 - 120 %

METHODS USED IN THIS ANALYSIS:

EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_l-w.xls

Analyst:

rlo-

Client:	International Uranium (USA) Corporation	Date Sampled:	03-28-01
Project:	WHITE MESA MILL		Time Sampled:	15:09
Sample ID:	WMMTW4-7		Date/Time Received:	04-02-01 10:00
Laboratory ID:	01-31916-7		Date Analyzed:	04-04-01
Matrix:	Liquid - WATER		Date Reported:	April 14, 2001
Dilution Factor:	100			н 1977 - Салан С 1977 - Салан С

C.A.S. #	TARGET COMPOUNDS	CONCENTRATION (µg/L)	REPORT LIMIT (µg/L)
67-66-3	Chloroform (Trichloromethane)	747	50.0

ND - Analyte not detected at stated limit of detection

RUNTIME QUALITY ASSURANCE REPORT				
		ICAL / CCAL	PERCENT	ACCEPTANCE
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE
Pentafluorobenzene	1105485	1150521	96.1%	50 - 200 %
Fluorobenzene	2323615	2388861	97.3%	50 - 200 %
1,4 - Difluorobenzene	1678345	1775533	94.5%	50 - 200 %
Chlorobenzene - d5	1136308	1163446	97.7%	50 - 200 %
1,4 - Dichlorobenzene - d4	448761	458787	97.8%	50 - 200 %

		PERCENT	ACCEPTANCE
SYSTEM MONITORING COMPOUNDS	CONCENTRATION	RECOVERY	RANGE
Dibromofluoromethane	9.38	93.8%	86 - 118 %
Toluene - d8	10.5	105%	88 - 110 %
4 - Bromofluorobenzene	10.0	100%	86 - 115 %
1,2 - Dichlorobenzene - d4	9.83	98.3%	80 - 120 %

METHODS USED IN THIS ANALYSIS:

EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_l-w.xls

Analyst:

rlo

j.

Client:	International Uranium (USA) Corporation	Date Sampled:	03-26-01
Project:	WHITE MESA MILL	Time Sampled:	17:00
Sample ID:	WMMTW4-8	Date/Time Received:	04-02-01 10:00
Laboratory ID:	01-31916-8	Date Analyzed:	04-04-01
Matrix:	Liquid - WATER	Date Reported:	April 14, 2001
Dilution Factor:	10		

C.A.S. #	TARGET COMPOUNDS	CONCENTRATION (µg/L)	REPORT LIMIT (µg/L)
67-66-3	Chloroform (Trichloromethane)	116	5.0

ND - Analyte not detected at stated limit of detection

RUNTIME QUALITY ASSURANCE REPORT				
	· · ·	ICAL / CCAL	PERCENT	ACCEPTANCE
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE
Pentafluorobenzene	1090084	1150521	94.7%	50 - 200 %
Fluorobenzene	2309760	2388861	96.7%	50 - 200 %
1,4 - Difluorobenzene	1664765	1775533	93.8%	50 - 200 %
Chlorobenzene - d5	1119681	1163446	96.2%	50 - 200 %
1,4 - Dichlorobenzene - d4	442367	458787	96.4%	50 - 200 %

		PERCENT	ACCEPTANCE
SYSTEM MONITORING COMPOUNDS	CONCENTRATION	RECOVERY	RANGE
Dibromofluoromethane	9.57	95.7%	86 - 118 %
Toluene - d8	10.4	104%	88 - 110 %
4 - Bromofluorobenzene	10.1	101%	86 - 115 %
1,2 - Dichlorobenzene - d4	9.94	99.4%	80 - 120 %

METHODS USED IN THIS ANALYSIS:

EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_l-w.xls

Analyst:

rìo

Client:	International Uranium (USA) Corporation	Date Sampled:	03-27-01
Project:	WHITE MESA MILL	Time Sampled:	11:35
Sample ID:	WMMTW4-9	Date/Time Received:	04-02-01 10:00
Laboratory ID:	01-31916-9	Date Analyzed:	04-05-01
Matrix:	Liquid - WATER	Date Reported:	April 14, 2001
Dilution Factor:	2		

C.A.S. #	TARGET C	OMPOUNDS	CONCENTRATION (µg/L)	REPORT LIMIT (µg/L)	
67-66-3	Chloroform	(Trichloromethane)	43.6	1.0	

ND - Analyte not detected at stated limit of detection

	RUNTII	ME QUALITY ASSURAN	CE REPORT	
	· · · · · · · · · · · · · · · · · · ·	ICAL / CCAL	PERCENT	ACCEPTANCE
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE
Pentafluorobenzene	1067998	1150521	92.8%	50 - 200 %
Fluorobenzene	2306313	2388861	96.5%	50 - 200 %
1,4 - Difluorobenzene	1658294	1775533	93.4%	50 - 200 %
Chlorobenzene - d5	1115898	1163446	95.9%	50 - 200 %
1,4 - Dichlorobenzene - d4	447091	458787	97.5%	50 - 200 %

SYSTEM MONITORING COMPOUNDS	CONCENTRATION	PERCENT RECOVERY	ACCEPTANCE RANGE
Dibromofluoromethane	9.50	95.0%	86 - 118 %
Toluene - d8	10.5	105%	88 - 110 %
4 - Bromofluorobenzene	10.1	101%	86 - 115 %
1.2 - Dichlorobenzene - d4	9.80	98.0%	80 - 120 %

METHODS USED IN THIS ANALYSIS: EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_l-w.xls

Analyst:

rlo

Client:	International Uranium (USA) Corporation	Date Sampled: 03-23-	-01
Project:	WHITE MESA MILL	Time Sampled: 12:4	5
Sample ID:	WMMTW4-10 QA	Date/Time Received: 04-02-01	10:00
Laboratory ID:	01-31916-10	Date Analyzed: 04-05-	-01
Matrix:	Liquid - WATER	Date Reported: April 14,	2001
Dilution Factor:	2		

	TARGET COMPOUNDS		REPORT LIMIT (µg/L)
67-66-3	Chloroform (Trichloromethane)	ND	1.0

ND - Analyte not detected at stated limit of detection

	RUNTI	ME QUALITY ASSURANC	E REPORT	
2000.000.0000		ICAL / CCAL	PERCENT	ACCEPTANCE
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE
Pentafluorobenzene	1081645	1150521	94.0%	50 - 200 %
Fluorobenzene	2280451	2388861	95.5%	50 - 200 %
1,4 - Difluorobenzene	1630418	1775533	91.8%	50 - 200 %
Chlorobenzene - d5	1103332	1163446	94.8%	50 - 200 %
1,4 - Dichlorobenzene - d4	437754	458787	95.4%	50 - 200 %
			PERCENT	ACCEPTANCE
SYSTEM MONITORING CO	OMPOUNDS	CONCENTRATION	RECOVERY	RANGE
Dibromofluoromethane		9.55	95.5%	86 - 118 %
Toluene - d8		10.6	106%	88 - 110 %
4 - Bromofluorobenzene		10.2	102%	86 - 115 %
1.2 - Dichlorobenzene - d4		9.91	99.1%	80 - 120 %

METHODS USED IN THIS ANALYSIS:

EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_l-w.xls

Analyst:

rio

Client:	International Uranium (USA) Corporation	Date Sampled:	03-23-01	
Project:	WHITE MESA MILL		Time Sampled:	12:47	
Sample ID:	wmmtw4-11 QA		Date/Time Received:	04-02-01 10:00	
Laboratory ID:	01-31916-11		Date Analyzed:	04-05-01	
Matrix:	Liquid - WATER		Date Reported:	April 14, 2001	
Dilution Factor:	2		• .	ана. Спорта страна страна Страна страна	

	TARGET COMPOUNDS	CC	DNCENTRAT (µg/L)		REPOR LIMIT (µg	
67-66-3	Chloroform (Trichloromethane)		ND	· · ·	1.0	

ND - Analyte not detected at stated limit of detection

	RUNTIA	ME QUALITY ASSURAN	CE REPORT	
		ICAL / CCAL	PERCENT	ACCEPTANCE
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE
Pentafluorobenzene	1087398	1150521	94.5%	50 - 200 %
Fluorobenzene	2312161	2388861	96.8%	50 - 200 %
1,4 - Difluorobenzene	1661249	1775533	93.6%	50 - 200 %
Chlorobenzene - d5	10930 5 4	1163446	93.9%	50 - 200 %
1,4 - Dichlorobenzene - d4	427271	458787	93.1%	50 - 200 %

SYSTEM MONITORING COMPOUNDS	CONCENTRATION	PERCENT <u>RECOVERY</u>	ACCEPTANCE RANGE
Dibromofluoromethane	9.53	95.3%	86 - 118 %
Toluene - d8	10.4	104 %	88 - 110 %
4 - Bromofluorobenzene	10.2	102%	86 - 115 %
1,2 - Dichlorobenzene - d4	9.91	99.1%	80 - 120 %

METHODS USED IN THIS ANALYSIS: EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_I-w.xls

Analyst:

rlo

Client:	International Uranium (USA) Corporation	Date Sampled:	03-29-01
Project:	WHITE MESA MILL	Time Sampled:	11:24
Sample ID:	WMMTW4-12 Dup. OF TW 4-2	Date/Time Received:	04-02-01 10:00
Laboratory ID:	01-31916-12	Date Analyzed:	04-06-01
Matrix:	Liquid - WATER	Date Reported:	April 14, 2001
Dilution Factor:	200		

C.A.S.#	TARGET COMPOUNDS	CONCENTRATION (µg/L)	REPORT LIMIT (µg/L)
67-66-3	Chloroform (Trichloromethane)	4,410	100

ND - Analyte not detected at stated limit of detection

	RUNTII	ME QUALITY ASSURAN	CE REPORT	
		ICAL / CCAL	PERCENT	ACCEPTANCE
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE
Pentafluorobenzene	954374	1150521	83.0%	50 - 200 %
Fluorobenzene	2199976	2388861	92.1%	50 - 200 %
1,4 - Difluorobenzene	1545815	1775533	87.1%	50 - 200 %
Chlorobenzene - d5	1054565	1163446	90.6%	50 - 200 %
1,4 - Dichlorobenzene - d4	411716	458787	89.7%	50 - 200 %

		PERCENT	ACCEPTANCE
SYSTEM MONITORING COMPOUNDS	CONCENTRATION	RECOVERY	RANGE
Dibromofluoromethane	10.0	100%	86 - 118 %
Toluene - d8	10.8	108%	88 - 110 %
4 - Bromofluorobenzene	10.4	104 %	86 - 115 %
1,2 - Dichlorobenzene - d4	9.83	98.3%	80 - 120 %

METHODS USED IN THIS ANALYSIS:

EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_l-w.xls

Analyst: rlo

Client:	International Uranium (USA) Corporation	Date Sampled:	03-23-01
Project:	WHITE MESA MILL	Time Sampled:	14:24
Sample ID:	WMMTW4-13 Rinsate prov to	Date/Time Received:	04-02-01 10:00
Laboratory ID:	01-31916-13 purging and	Date Analyzed:	04-05-01
Matrix:	Liquid - WATER Sampling Poc wells.	Date Reported:	April 14, 2001
Dilution Factor:	2 (Collected a free, ex)		

C.A.S. #	TARGET COMPOUNDS	CONCENTRATION (µg/L)	REPORT LIMIT (µg/L)
67-66-3	Chloroform (Trichloromethane)	16.7	1.0

ND - Analyte not detected at stated limit of detection

	RUNTIN	IE QUALITY ASSURAN	CE REPORT	
	· · · · · · ·	ICAL / CCAL	PERCENT	ACCEPTANCE
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE
Pentafluorobenzene	1056010	1150521	91.8%	50 - 200 %
Fluorobenzene	2291350	2388861	95.9%	50 - 200 %
4 - Difluorobenzene	1639990	1775533	92.4%	50 - 200 %
Chlorobenzene - d5	1102979	1163446	94.8%	50 - 200 %
1,4 - Dichlorobenzene - d4	429163	458787	93.5%	50 - 200 %

		PERCENT	ACCEPTANCE
SYSTEM MONITORING COMPOUNDS	CONCENTRATION	RECOVERY	RANGE
Dibromofluoromethane	9.56	95.6%	86 - 118 %
Toluene - d8	10.5	105%	88 - 110 %
4 - Bromofluorobenzene	10.1	101 %	86 - 115 %
1,2 - Dichlorobenzene - d4	9.85	98.5%	80 - 120 %

METHODS USED IN THIS ANALYSIS:

EPA 5030B, EPA 8260B

Analyst:

rlo

Client:	International Uranium (USA) Corporation	Date Sampled:	03-25-01
Project:	WHITE MESA MILL	Time Sampled:	12:33
Sample ID:	WMMTW4-14 Rensite proc to 01-31916-14 MW-17	Date/Time Received:	04-02-01 10:00
Laboratory ID:	01-31916-14 MW-17	, Date Analyzed:	04-05-01
Matrix:	Liquid - WATER	Date Reported:	April 14, 2001
Dilution Factor:	2		

C.A.S. #	TARGET COMPOUNDS	CONCENTRATION (µg/L)	REPORT LIMIT (µg/L)
67-66-3	Chloroform (Trichloromethane)	ND	1.0

ND - Analyte not detected at stated limit of detection

	KUNIII	ME QUALITY ASSURAN ICAL / CCAL	<u>CE REPORT</u> PERCENT	ACCEPTANCE
NTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE
Pentafluorobenzene	1053851	1150521	91.6%	50 - 200 %
Inorobenzene	2258371	2388861	94.5%	50 - 200 %
.4 - Difluorobenzene	1603542	1775533	90.3%	50 - 200 %
Chlorobenzene - d5	1090824	1163446	93.8%	50 - 200 %
1,4 - Dichlorobenzene - d4	426403	458787	92.9%	50 - 200 %

· · · · ·		PERCENT	ACCEPTANCE
SYSTEM MONITORING COMPOUNDS	CONCENTRATION	RECOVERY	RANGE
Dibromofluoromethane	9.62	96.2 %	86 - 118 %
Toluene - d8	10.6	106%	88 - 110 %
4 - Bromofluorobenzene	10.1	101%	86 - 115 %
1,2 - Dichlorobenzene - d4	9.78	97.8%	80 - 120 %

METHODS USED IN THIS ANALYSIS:

EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_l-w.xls

Analyst:

rio

Client: Project:	International Uranium (USA) Corporation WHITE MESA MILL	Date Sampled:03-25-01Time Sampled:13:35
Sample ID: Laboratory ID:	WMMTW4-15 Runs de prior to 01-31916-15 Chloroform wells.	Date/Time Received: 04-02-01 10:00 Date Analyzed: 04-05-01
Matrix: Dilution Factor:	Liquid - WATER 2	Date Reported: April 14, 2001

C.A.S. #	TARGET COMPOUNDS	CONCENTRATION (µg/L)	REPORT LIMIT (µg/L)
67-66-3	Chloroform (Trichloromethane)	ND	1.0
	A		 A second s

ND - Analyte not detected at stated limit of detection

		HE QUALITY ASSURAN		
		ICAL / CCAL	PERCENT	ACCEPTANCE
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE
Pentafluorobenzene	1064856	1150521	92.6%	50 - 200 %
Fluorobenzene	2258935	2388861	94.6%	50 - 200 %
1,4 - Difluorobenzene	1624960	1775533	91.5%	50 - 200 %
Chlorobenzene - d5	1088 08 1	1163446	93.5%	50 - 200 %
1,4 - Dichlorobenzene - d4	419852	458787	91.5%	50 - 200 %

SYSTEM MONITORING COMPOUNDS	CONCENTRATION	PERCENT <u>RECOVERY</u>	ACCEPTANCE RANGE
Dibromofluoromethane	9.47	94.7%	86 - 118 %
Toluene - d8	10.5	105%	88 - 110 %
4 - Bromofluorobenzene	10.1	101 %	86 - 115 %
1,2 - Dichlorobenzene - d4	9.98	99.8%	80 - 120 %

METHODS USED IN THIS ANALYSIS:

EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_l-w.xls

Analyst: rlo

Client:	International Uranium (USA) Corporation	Date Sampled:	03-29-01	
Project:	WHITE MESA MILL	Time Sampled:	12:50	
Sample ID:	WMMMW4	Date/Time Received:	04-02-01 10:00	÷
Laboratory ID:	01-31916-16	Date Analyzed:	04-05-01	
Matrix:	Liquid - WATER	Date Reported:	April 14, 2001	
Dilution Factor:	400		2	

	TARGET C	OMPOUNDS	CONCENTRATIC (µg/L)	ON REP LIMIT	(ue/I)
67-66-3	Chloroform	(Trichloromethane)	4,360	20	10

ND - Analyte not detected at stated limit of detection

	RUNTIA	ME QUALITY ASSURAN	CE REPORT	
		ICAL / CCAL	PERCENT	ACCEPTANCE
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE
Pentafluorobenzene	1042084	1150521	90.6%	50 - 200 %
Fluorobenzene	2239095	2388861	93.7%	50 - 200 %
1,4 - Difluorobenzene	1612 893	1775533	90.8%	50 - 200 %
Chlorobenzene - d5	1075862	1163446	92.5%	50 - 200 %
1,4 - Dichlorobenzene - d4	420445	458787	91.6%	50 - 200 %

SYSTEM MONITORING COMPOUNDS	CONCENTRATION	PERCENT <u>RECOVERY</u>	ACCEPTANCE RANGE
Dibromofluoromethane	9.46	94.6%	86 - 118 %
Toluene - d8	10.4	104%	88 - 110 %
4 - Bromofluorobenzene	10.2	1 02 %	86 - 115 %
1,2 - Dichlorobenzene - d4	9.98	- 99.8%	80 - 120 %

METHODS USED IN THIS ANALYSIS:

EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_l-w.xls

Analyst:

rlo :

Client:	International Uranium (USA) Corporation	Date Sampled:	03-25-01
Project:	WHITE MESA MILL	Time Sampled:	14:48
Sample ID:	WMMMW17	Date/Time Received:	04-02-01 10:00
Laboratory ID:	01-31916-17	Date Analyzed:	04-05-01
Matrix:	Liquid - WATER	Date Reported:	April 14, 2001
Dilution Factor:	2	· · · · · · · · · · · · · · · · · · ·	

	•	CONCENTRATION	· · · · · · · · · · · · · · · · · · ·
		CONCENTRATION	nrnanr
			AT PAIR I
			8 83 <i>8 7</i> 7 7 7 8 9
	THE COMPANE	(7 334777 /
		100/1	
	I ARODA COLM CCLOD	(PS/2)	
		NTD.	1.0
17 66 2	Chloroform (Trichloromethane)	ND	
0/-00-2	Cinorona (Asiomoromound)	1.2	

ND - Analyte not detected at stated limit of detection

	RUNTII	ME QUALITY ASSURAN	CE REPORT	
	·	ICAL / CCAL	PERCENT	ACCEPTANCE
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE
Pentafluorobenzene	1055347	1150521	91.7%	50 - 200 %
Fluorobenzene	2270030	2388861	95.0%	50 - 200 %
1,4 - Difluorobenzene	1618320	1775533	91.1%	50 - 200 %
Chlorobenzene - d5	1091563	1163446	93.8%	50 - 200 %
1,4 - Dichlorobenzene - d4	432256	458787	94.2%	50 - 200 %

		PERCENT	ACCEPTANCE
SYSTEM MONITORING COMPOUNDS	CONCENTRATION	RECOVERY	RANGE
Dibromofluoromethane	9.61	96.1%	86 - 118 %
Toluene - d8	10.6	106%	88 - 110 %
4 - Bromofluorobenzene	10.2	102%	86 - 115 %
1,2 - Dichlorobenzene - d4	9.88	98.8%	80 - 120 %

METHODS USED IN THIS ANALYSIS:

EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_1-w.xls

Analyst:

rło

Client:	International Uranium (USA) (Corporation	Date Sampled:	03-30-01
Project:	WHITE MESA MILL		Time Sampled:	07:36
Sample ID:	WMMTW4 COMP		Date/Time Received:	04-02-01 10:00
Laboratory ID:	01-31916-18		Date Analyzed:	04-05-01
Matrix:	Liquid - WATER		Date Reported:	April 14, 2001
Dilution Factor:	100	·		

C.A.S. #	TARGET COMPOUNDS	CONCENTRATION (µg/L)	REPORT LIMIT (µg/L)
67-66-3	Chloroform (Trichloromethane)	687	50.0

ND - Analyte not detected at stated limit of detection

RUNTIME QUALITY ASSURANCE REPORT					
	·	ICAL / CCAL	PERCENT	ACCEPTANCE	
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE	
Pentafluorobenzene	1036677	1150521	90.1%	50 - 200 %	
Fluorobenzene	2249534	2388861	94.2%	50 - 200 %	
1,4 - Difluorobenzene	1598837	1775533	90.0%	50 - 200 %	
Chlorobenzene - d5	1072 649	1163446	92.2%	50 - 200 %	
1,4 - Dichlorobenzene - d4	416945	458787	90.9%	50 - 200 %	

SYSTEM MONITORING COMPOUNDS	CONCENTRATION	PERCENT RECOVERY	ACCEPTANCE RANGE
Dibromofluoromethane	9.44	94.4%	86 - 118 %
Toluene - d8	10.6	106%	88 - 110 %
4 - Bromofluorobenzene	10.2	102%	86 - 115 %
1,2 - Dichlorobenzene - d4	9.92	99.2%	80 - 120 %

METHODS USED IN THIS ANALYSIS:

EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_1-w.xls

Analyst:

rio

Client:	International Uranium (USA) Corporation	Date Sampled:	03-16-01
Project:	WHITE MESA MILL	Time Sampled:	16:10
Sample ID:	TRIP BLANK	Date/Time Received:	04-02-01 10:00
Laboratory ID:	01-31916-19	Date Analyzed:	04-04-01
Matrix:	Liquid - WATER	Date Reported:	April 14, 2001
Dilution Factor:	1		

C.A.S. #			REPORT LIMIT (pg/L)
67-66-3	Chloroform (Trichloromethane)	ND	1.0

ND - Analyte not detected at stated limit of detection

	RUNTII	ME QUALITY ASSURAN	CE REPORT	
		ICAL / CCAL	PERCENT	ACCEPTANCE
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE
Pentafluorobenzene	1191328	1150521	104%	50 - 200 %
Fluorobenzene	2452721	2388861	103%	50 - 200 %
1,4 - Difluorobenzene	1788376	1775533	101 %	50 - 200 %
Chlorobenzene - d5	1218017	1163446	105%	50 - 200 %
1,4 - Dichlorobenzene - d4	491947	458 78 7	107%	50 - 200 %

		PERCENT	ACCEPTANCE
SYSTEM MONITORING COMPOUNDS	CONCENTRATION	RECOVERY	RANGE
Dibromofluoromethane	9.59	95.9%	86 - 118 %
Toluene - d8	10.2	102%	88 - 110 %
4 - Bromofluorobenzene	9.89	98 .9%	86 - 115 %
1,2 - Dichlorobenzene - d4	9.79	97.9%	80 - 120 %

METHODS USED IN THIS ANALYSIS:

EPA 5030B, EPA 8260B

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_l-w.xls

Analyst:

rlo

語語の

.

International Uranium (USA) Corporation Date Sampled: N/A Client: WHITE MESA MILL Time Sampled: N/A Project: Date/Time Received: N/A Sample ID: Method Blank MB0404 Date Analyzed: 04-04-01 Laboratory ID: Date Reported: Water April 12, 2001 Matrix: **Dilution Factor:** 1

C.A.S. #	TARGET COMPOUNDS	CONCENTRATION	REPORT LIMIT (µg/L)
67-66-3	Chloroform (Trichloromethane)	ND	1.0

ND - Analyte not detected at stated limit of detection

	RUNT	IME QUALITY ASSURANC	E REPORT	
		ICAL / CCAL	PERCENT	ACCEPTANCE
INTERNAL STANDARDS	AREA	AREA	RECOVERY	RANGE
Pentafluorobenzene	1184558	1150521	103%	50 - 200 %
Fluorobenzene	2435440	2388861	102%	50 - 200 %
1,4 - Difluorobenzene	1782379	1775533	100%	50 - 200 %
Chlorobenzene - d5	1183537	1163446	· 102 <i>%</i>	50 - 200 %
1,4 - Dichlorobenzene - d4	464888	458787	101%	50 - 200 %
			PERCENT	ACCEPTANCE
SYSTEM MONITORING CO)MPOUNDS	CONCENTRATION	RECOVERY	RANGE
Dibromofluoromethane		9.53	95.3%	86 - 118 %
Toluene - d8		10.2	102%	88 - 110 %
4 - Bromofluorobenzene		9.88	98.8%	86 - 115 %
1,2 - Dichlorobenzene - d4		9.85	98.5%	80 - 120 %

METHODS USED IN THIS ANALYSIS:

EPA 5030B, EPA 8260B

1,2 - Dichlorobenzene - d4

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_1-w.xls

Analyst:

rlo

LABORATORY ANALYSIS REPORT, EPA METHOD 8260 OC RESULTS - MATRIX SPIKE (MS), MATRIX SPIKE DUPLICATE (MSD)

Client:	International	Uranium (USA) Co	orporation		Date Sampled:	03-29-01
Sample Set:	01-31916-1 thre	ough 01-31916-19	•	Date/7	Time Received:	04-02-01 10:00
Laboratory ID:	01-31916-17 S			. te j	Date Analyzed:	04-05-01
Matrix:	Liquid - WATH	ER .			Date Reported:	April 12, 2001
				· .		· ·
NTERNAL STANDARDS						
<u> Ale Fundale Statization 24</u>	ICAL / CCAL	SPIKED SAMPLE		SPIKE DUPLICATE		ACCEPTAN
	AREA	AREA	<u>%</u>	AREA	<u>%</u>	RANGE
Pentafluorobenzene	1150521	1025937	89.2%	1034958	90.0%	50 - 200 %
Fluorobenzene	2388861	2213431	92.7%	2237292	93.7%	50 - 200 %
1,4 - Difluorobenzene	1775533	1595730	89.9%	1600008	90.1%	50 - 200 %
Chiorobenzene - d5	1163446	1065324	91.6%	1060181	91.1%	50 - 200 %
1,4 - Dichlorobenzene-d4	458787	425066	92.6%	424488	92.5%	50 - 200 %
YSTEM MONITORING COMPO	UNDS					
		SPIKED SAMPLE	PERCENT	SPIKE DUPLICATE	PERCENT	ACCEPTAN
		CONCENTRATION	RECOVERY	CONCENTRATION	RECOVERY	RANGE
Dibromofluoromethan	e	9.62	96.2%	9.57	95.7%	86 - 118 %
Toluene - d8	· .	10.6	106%	10.6	106%	88 - 110 %
4 - Bromofluorobenzer	e	10.3	103%	10.4	104%	86 - 115 %
1,2 - Dichlorobenzene-		9.95	99.5%	9.97	99.7%	80 - 120 %
<u>PIKED SAMPLE RESULTS</u>		SPIKED SAMPLE	DRIG CONC	SPIKE AMOUNT	PERCENT	ACCEPTAN
		CONCENTRATION	(μg/L).*	51 IKE ΑΜΟΟΙΤΙ (μg/L)	RECOVERY	RANGE
				10.0		
Chloroform (Trichloromethane)		9.85	ND	10.0	98.5%	70 - 130 %
• ·						
				* Concentratio	on does include	dilution correcti
PIKE DUPLICATE SAMPLE	<u>RESULTS</u>			Concentratio	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
<u>PIKE DUPLICATE SAMPLE</u>	<u>RESULIS</u> SPIKE DUP	ORIG. CONC.	SPIKE	PERCENT		RPD
	SPIKE DUP			PERCENT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
CO	SPIKE DUP NCENTRATION	(ug/L)	(µg/L)	PERCENT RECOVERY	RPD	LIMITS
	SPIKE DUP			PERCENT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
CO	SPIKE DUP NCENTRATION	(ug/L)	(µg/L)	PERCENT RECOVERY	RPD	LIMITS
CO	SPIKE DUP NCENTRATION	(ug/L)	(µg/L)	PERCENT RECOVERY	RPD	LIMITS
CO	SPIKE DUP NCENTRATION	(ug/L)	(µg/L)	PERCENT RECOVERY	RPD	LIMITS
<u>CO</u> hloroform (Trichloromethane)	SPIKE DUP NCENTRATION	(ug/L)	<u>(µg/L)</u> 10.0	PERCENT RECOVERY 101%	RPD	LIMITS

sec: r:\reports\clients2001\international_uranium_corp\casper_org\31916-1-19_8260b_chloroform_1-w.xls

Analyst:

rlo

1992

日本の支援政策

CERCE - VOIG D

Copy to: MRK

Order No: C01060297

ENERGY LABORATORIES, INC. SHIPPING: 2393 SALT CREEK HIGHWAY • CASPER, WY 82601 MAILING: P.O. BOX 3258 • CASPER, WY 82602 E-mail: casper@energylab.com • FAX: (307) 234-1639 PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

July 10, 2001

Wally Brice International Uranium Corp. (IUC) PO Box 809 Blanding, Utah 84511

RE: White Mesa Mill

Mr. Brice:

The following cover letter is a summary of the attached analytical results for the above referenced project.

This packet contains one invoice, thirteen pages of analytical results, one page of quality assurance data, the project chain of custody, and the sample receipt condition report. This packet contains 20 pages including this cover letter.

There were no problems with the analyses and all data for the batch QC met USEPA or laboratory specifications.

If you have any questions regarding these test results, please feel free to call. Energy Laboratories, Inc. appreciates the opportunity to provide you with analytical services for your projects.

STEVEN S

Approved By:

QAQC - Data Validation:

CLIENT:International Uranium (USA) Corp-BlandinLab Order:C01060297Project:White Mesa MillLab ID:C01060297-001Matrix: AQUEOUS

Report Date: 07/05/01 Collection Date: 06/21/01 10:34 Client Sample ID: WMMTW4-1

					MCL/	• • •		
Analyses	Result	Units	Qual	RL	QCL	Method	Analysis Date / By	
VOLATILE ORGANIC COMPOUNDS								
Chloroform	6000	ug/L		200		SW8260B	06/28/01 17:03 / rlo	
Surr: 1,2-Dichlorobenzene-d4	99.8	%REC			80-120	SW8260B	06/28/01 17:03 / rlo	
Surr: Dibromofluoromethane	111	%REC			80-120	SW8260B	06/28/01 17:03 / rlo	
Surr: p-Bromofluorobenzene	102	%REC			80-120	SW8260B	06/28/01 17:03 / rio	
Surr: Toluene-d8	102	%REC			80-120	SW8260B	06/28/01 17:03 / rto	

Report Definitions: ND - Not detected at the reporting limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated method blank

- MCL Maximum contaminant level
- QCL Quality control limit

S - Spike recovery outside accepted recovery limits

R - RPD outside accepted recovery limits.

- * Value exceeds maximum contaminant level
- RL Analyte reporting level

Page 1 of 13

CLIENT:International Uranium (USA) Corp-BlandinLab Order:C01060297Project:White Mesa MillLab ID:C01060297-002Matrix: AQUEOUS

Report Date: 07/05/01 Collection Date: 06/22/01 10:42 Client Sample ID: WMMTW4-2

	· ···		· · · ·	-	MCL/	·			
Analyses	Result	Units	Qual	RL	QCL	Method	Analysis Date / By		
	ŕ.		· · ·						
Chloroform	5500	ug/L		200		SW8260B	06/28/01 17:46 / rlo		
Surr: 1,2-Dichlorobenzene-d4	101	%REC			80-120	SW8260B	06/28/01 17:46 / rlo		
Surr: Dibromofluoromethane	114	%REC			80-120	SW8260B	06/28/01 17:46 / rio		
Surr: p-Bromofluorobenzene	102	%REC			80-120	SW8260B	06/28/01 17:46 / rio		
Surr: Toluene-d8	100	%REC			80-120	SW8260B	06/28/01 17:46 / rto		

Report Definitions: ND - Not detected at the reporting limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated method blank

MCL - Maximum contaminant level

QCL - Quality control limit

S - Spike recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

* - Value exceeds maximum contaminant level

RL - Analyte reporting level

Page 2 of 13

CLIENT:International Uranium (USA) Corp-BlandinLab Order:C01060297Project:White Mesa MillLab ID:C01060297-003Matrix: AQUEOUS

Report Date: 07/05/01 Collection Date: 06/21/01 09:04 Client Sample ID: WMMTW4-3

	· .			-	MCL/		······································			
Analyses	Result	Units	Qual	RL	QCL	Method	Analysis Date / By			
VOLATILE ORGANIC COMPOUNDS										
Chloroform	390	ug/L		50		SW8260B	06/28/01 18:28 / rio			
Surr: 1,2-Dichlorobenzene-d4	98.8	%REC			80-120	SW8260B	06/28/01 18:28 / rio			
Surr: Dibromofluoromethane	113	%REC			80-120	SW8260B	06/28/01 18:28 / rlo			
Surr: p-Bromofluorobenzene	102	%REC			80-120	SW8260B	06/28/01 18:28 / rio			
Surr: Toluene-d8	101	%REC			80-120	SW8260B	06/28/01 18:28 / rio			

Report Definitions: ND - Not detected at the reporting limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated method blank

MCL - Maximum contaminant level

QCL - Quality control limit

S - Spike recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

- * Value exceeds maximum contaminant level
- RL Analyte reporting level

Page 3 of 13

CLIENT:International Uranium (USA) Corp-BlandinLab Order:C01060297Project:White Mesa MillLab ID:C01060297-004Matrix: AQUEOUS

Report Date: 07/05/01 Collection Date: 06/20/01 09:36 Client Sample ID: WMMTW4-4

					MCL/		
Analyses	Result	Units	Qual	RL	QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS							
Chloroform	3100	ug/L		200		SW8260B	06/28/01 19:11 / rio
Surr: 1,2-Dichlorobenzene-d4	100	%REC			80-120	SW8260B	06/28/01 19:11 / rio
Surr: Dibromofluoromethane	113	%REC			80-120	SW8260B	06/28/01 19:11 / rlo
Surr: p-Bromofluorobenzene	103	%REC			80-120	SW8260B	06/28/01 19:11 / rio
Surr: Toluene-d8	101	%REC			80-120	SW8260B	06/28/01 19:11 / rio

Report Definitions: ND - Not detected at the reporting limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated method blank

- MCL Maximum contaminant level
- QCL Quality control limit

S - Spike recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

* - Value exceeds maximum contaminant level

RL - Analyte reporting level

Page 4 of 13

CLIENT:International Uranium (USA) Corp-BlandinLab Order:C01060297Project:White Mesa MillLab ID:C01060297-005Matrix: AQUEOUS

Report Date: 07/05/01 Collection Date: 06/20/01 14:14 Client Sample ID: WMMTW4-5

Analyses	Result	Units	Qual	MCL/ RL QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS					· · · · · · · · · · · · · · · · · · ·	
Chloroform	240	ug/L		10	SW8260B	06/28/01 19:53 / rlo
Surr: 1,2-Dichlorobenzene-d4	99.3	%REC		80-120	SW8260B	06/28/01 19:53 / rlo
Surr: Dibromofluoromethane	117	%REC		80-120	SW8260B	06/28/01 19:53 / rio
Surr: p-Bromofluorobenzene	102	%REC		80-120	SW8260B	06/28/01 19:53 / rlo
Surr: Toluene-d8	102	%REC		80-120	SW8260B	06/28/01 19:53 / rlo

Report Definitions: ND - Not detected at the reporting limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated method blank

MCL - Maximum contaminant level

QCL - Quality control limit

S - Spike recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

* - Value exceeds maximum contaminant level

RL - Analyte reporting level

Page 5 of 13

CLIENT:International Uranium (USA) Corp-BlandinLab Order:C01060297Project:White Mesa MillLab ID:C01060297-006Matrix: AQUEOUS

Report Date: 07/05/01 Collection Date: 06/20/01 09:58 Client Sample ID: WMMTW4-6

Analyses	Result	Units	Qual		MCL/ QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS							· · · · · · · · · · · · · · · · · · ·
Chloroform	ND	ug/L		2.0		SW8260B	06/28/01 20:36 / rlo
Surr: 1,2-Dichlorobenzene-d4	100	%REC			80-120	SW8260B	06/28/01 20:36 / rlo
Surr: Dibromofluoromethane	114	%REC			80-120	SW8260B	06/28/01 20:36 / rio
Surr: p-Bromofluorobenzene	102	%REC			80-120	SW8260B	06/28/01 20:36 / rlo
Surr: Toluene-d8	102	%REC			80-120	SW8260B	06/28/01 20:36 / rlo

Report Definitions: ND - Not detected at the reporting limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated method blank

MCL - Maximum contaminant level

QCL - Quality control limit

S - Spike recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

* - Value exceeds maximum contaminant level

RL - Analyte reporting level

Page 6 of 13

CLIENT:	International Uran	ium (USA) Corp-Blandin
Lab Order:	C01060297	
Project:	White Mesa Mill	
Lab ID:	C01060297-007	Matrix: AQUEOUS

Report Date: 07/05/01 Collection Date: 06/20/01 12:55 Client Sample ID: WMMTW4-8

					MCL/		· · · · · · · · · · · · · · · · · · ·
Analyses	Result	Units	Qual	RL	QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS							
Chloroform	180	ug/L		10		SW8260B	06/28/01 21:19 / rlo
Surr: 1,2-Dichlorobenzene-d4	101	%REC	÷		80-120	SW8260B	06/28/01 21:19 / rlo
Surr: Dibromofluoromethane	112	%REC			80-120	SW8260B	06/28/01 21:19 / rlo
Surr: p-Bromofluorobenzene	103	%REC			80-120	SW8260B	06/28/01 21:19 / rlo
Surr: Toluene-d8	102	%REC			80-120	SW8260B	06/28/01 21:19 / rlo

Report Definitions: ND - Not detected at the reporting limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated method blank

- MCL Maximum contaminant level
- QCL Quality control limit

S - Spike recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

- * Value exceeds maximum contaminant level
- RL Analyte reporting level

Page 7 of 13

CLIENT:International Uranium (USA) Corp-BlandinLab Order:C01060297Project:White Mesa MillLab ID:C01060297-008Matrix: AQUEOUS

Report Date: 07/05/01 Collection Date: 06/20/01 11:09 Client Sample ID: WMMTW4-9

	MCL/									
Analyses	Result	Units	Qual	RL	QCL	Method	Analysis Date / By			
ORGANIC COMPOUNDS										
Chloroform	59	ug/L		2.0		SW8260B	06/28/01 22:01 / rlo			
Surr: 1,2-Dichlorobenzene-d4	98.3	%REC			80-120	SW8260B	06/28/01 22:01 / rlo			
Surr: Dibromofluoromethane	112	%REC			80-120	SW8260B	06/28/01 22:01 / rlo			
Surr: p-Bromofluorobenzene	103	%REC			80-120	SW8260B	06/28/01 22:01 / rio			
Surr: Toluene-d8	102	%REC			80-120	SW8260B	06/28/01 22:01 / rlo			
· · ·						1.				

Report Definitions: ND - Not detected at the reporting limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated method blank

MCL - Maximum contaminant level

QCL - Quality control limit

S - Spike recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

* - Value exceeds maximum contaminant level

RL - Analyte reporting level

Page 8 of 13

CLIENT:International Uranium (USA) Corp-BlandinLab Order:C01060297Project:White Mesa MillLab ID:C01060297-009Matrix: AQUEOUS

Report Date: 07/05/01 Collection Date: 06/21/01 09:50 Client Sample ID: WMMTW4-7

					MCL/		
Analyses	Result	Units	Qual	RL	QCL	Method	Analysis Date / By
ORGANIC COMPOUNDS							
Chloroform	1100	ug/L		50		SW8260B	06/28/01 22:44 / rlo
Surr: 1,2-Dichlorobenzene-d4	98.5	%REC			80-120	SW8260B	06/28/01 22:44 / rlo
Surr: Dibromofluoromethane	113	%REC			80-120	SW8260B	06/28/01 22:44 / rio
Surr: p-Bromofluorobenzene	103	%REC			80-120	SW8260B	06/28/01 22:44 / rlo
Surr: Toluene-d8	101	%REC			80-120	SW8260B	06/28/01 22:44 / rio

Report Definitions: ND - Not detected at the reporting limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated method blank

- MCL Maximum contaminant level
- QCL Quality control limit

- S Spike recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- * Value exceeds maximum contaminant level
- RL Analyte reporting level

CLIENT:	International Uran	ium (USA) Corp-Blandin
Lab Order:	C01060297	
Project:	White Mesa Mill	·
Lab ID:	C01060297-010	Matrix: AQUEOUS

Report Date: 07/05/01 Collection Date: 06/22/01 11:25 Client Sample ID: WMMMW-4

					MCL/			
Analyses	Result	Units	Qual	RL	QCL	Method	Analysis Date / By	
VOLATILE ORGANIC COMPOUNDS						.,		
Chloroform	6300	ug/L		400		SW8260B	06/28/01 23:26 / rlo	
Surr: 1,2-Dichlorobenzene-d4	99.0	%REC	.'		80-120	SW8260B	06/28/01 23:26 / rlo	
Surr: Dibromofluoromethane	117	%REC			80-120	SW8260B	06/28/01 23:26 / rlo	
Surr: p-Bromofluorobenzene	105	%REC			80-120	SW8260B	06/28/01 23:26 / rlo	
Surr: Toluene-d8	101	%REC			80-120	SW8260B	06/28/01 23:26 / rio	

Report Definitions:

- ND Not detected at the reporting limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated method blank
- MCL Maximum contaminant level
- QCL Quality control limit

- S Spike recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- * Value exceeds maximum contaminant level
- RL Analyte reporting level

Page 10 of 13

102205

CLIENT:	International Uran	ium (USA) Corp-Blandin
Lab Order:	C01060297	
Project:	White Mesa Mill	
Lab ID:	C01060297-011	Matrix: AQUEOUS

Report Date: 07/05/01 Collection Date: 06/21/01 09:04 Client Sample ID: WMMTW4-10

A molenne	Result	Units	Oual	DI	MCL/ QCL	Method	Analysis Date / By
Analyses	Kesuit	Units	Quai		QCL	Methou	Analysis Date / B
VOLATILE ORGANIC COMPOUNDS							
Chloroform	320	ug/L		2.0		SW8260B	06/29/01 00:09 / rio
Surr: 1,2-Dichlorobenzene-d4	97.9	%REC	•		80-120	SW8260B	06/29/01 00:09 / rio
Surr: Dibromofluoromethane	116	%REC			80-120	SW8260B	06/29/01 00:09 / rlo
Surr: p-Bromofluorobenzene	102	%REC			80-120	SW8260B	06/29/01 00:09 / rlo
Surr: Toluene-d8	102	%REC			80-120	SW8260B	06/29/01 00:09 / rlo

Report Definitions: ND - Not detected at the reporting limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated method blank

- MCL Maximum contaminant level
- QCL Quality control limit

- S Spike recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- * Value exceeds maximum contaminant level
- RL Analyte reporting level

Page 11 of 13

CLIENT:International Uranium (USA) Corp-BlandinLab Order:C01060297Project:White Mesa MillLab ID:C01060297-012Matrix: AQUEOUS

Report Date: 07/05/01 Collection Date: 06/21/01 12:11 Client Sample ID: WMMTW4-11

					MCL/		
Analyses	Result	Units	Qual	RL	QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS	а С. А.				•		
Chloroform	3.0	ug/L		1.0		SW8260B	06/29/01 00:51 / rio
Surr: 1,2-Dichlorobenzene-d4	102	%REC			80-120	SW8260B	06/29/01 00:51 / rio
Surr: Dibromofluoromethane	118	%REC	· .' ·		80-120	SW8260B	06/29/01 00:51 / rlo
Surr: p-Bromofiuorobenzene	103	%REC			80-120	SW8260B	06/29/01 00:51 / rio
Surr: Toluene-d8	102	%REC			80-120	SW8260B	06/29/01 00:51 / rlo

Report Definitions: ND - Not detected at the reporting limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated method blank

- MCL Maximum contaminant level
- QCL Quality control limit

S - Spike recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

- * Value exceeds maximum contaminant level
- RL Analyte reporting level

Page 12 of 13

CLIENT:International Uranium (USA) Corp-BlandinLab Order:C01060297Project:White Mesa MillLab ID:C01060297-013Matrix: AQUEOUS

Report Date: 07/05/01 Collection Date: 06/22/01 13:50 Client Sample ID: WMMTW4-Comp

Analyses	Result	Units	Oual	RL	MCL/ QCL	Method	Analysis Date / By
		<u> </u>	Quar		<u>QCD</u>	Method	Analysis Date / Dy
VOLATILE ORGANIC COMPOUNDS			··· •				
Chioroform	960	ug/L		100		SW8260B	06/29/01 01:34 / rlo
Surr: 1,2-Dichlorobenzene-d4	101	%REC			80-120	SW8260B	06/29/01 01:34 / rio
Surr: Dibromofluoromethane	118	%REC			80-120	SW8260B	06/29/01 01:34 / rlo
Surr: p-Bromofluorobenzene	103	%REC			80-120	SW8260B	06/29/01 01:34 / rlo
Surr: Toluene-d8	103	%REC			80-120	SW8260B	06/29/01 01:34 / rlo

Report Definitions: ND - Not detected at the reporting limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated method blank

- MCL Maximum contaminant level
- QCL Quality control limit

S - Spike recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

* - Value exceeds maximum contaminant level

RL - Analyte reporting level

Page 13 of 13

International Uranium (USA) Corp-Blandin CLIENT: ANALYTICAL QC SUMMARY REPORT Date: 05-Jul-01 C01060297 Work Order: TestCode: VOC-8260-W-SHT White Mesa Mill **Project:** Sample ID: Method Blank # SampType: MBLK TestCode: VOC-8260-W-SHT Units: ua/L Prep Date: Run ID: GCMS1-C_010628A Client ID: Batch ID: R282 TestNo: SW8260B Analysis Date: 6/28/2001 SeqNo: 5880 Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Chloroform ND 1.0 Surr: 1,2-Dichlorobenzene-d4 9.99 10 0 0 .99.9 80 120 0 0 Surr: Dibromofluoromethane 11.43 0 10 120 0 0 0 114 80 Surr: p-Bromofluorobenzene 10.29 0 10 0 103 80 120 0 0 Surr: Toluene-d8 10.13 0 10 ٥ 101 80 120 0 0 Sample ID: C01060297-013A SampType: MS TestCode: VOC-8260-W-SHT Units: ug/L Run ID: GCMS1-C_010628A Prep Date: Client ID: WMMTW4-Comp Batch ID: R282 TestNo: SW8260B Analysis Date: 6/29/2001 SeqNo: 5894 %RPD RPDLimit Qual Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val Analyte 13330 1000 10000 956 124 70 130 0 0 Chloroform 10000 80 120 0 0 9960 0 0 99.6 Surr: 1.2-Dichlorobenzene-d4 0 0 11980 0 10000 0 120 80 120 Surr: Dibromofluoromethane 80 120 0 0 10390 0 10000 0 104 Surr: p-Bromofluorobenzene 120 0 ٥ 80 Surr: Toluene-d8 9890 0 10000 0 98.9 Prep Date: Run ID: GCMS1-C_010628A SampType: MSD TestCode: VOC-8260-W-SHT Units: ug/L Sample ID: C01060297-013A SeqNo: 5895 Analysis Date: 6/29/2001 TestNo: SW8260B Client ID: WMMTW4-Comp Batch ID: R282 RPDLimit Qual LowLimit HighLimit RPD Ref Val %RPD PQL SPK value SPK Ref Val %REC Result Analyte 20 130 13330 1.78 1000 10000 956 126 70 13570 Chloroform 10 120 0 0 101 80 0 10000 0 10110 Surr: 1,2-Dichlorobenzene-d4 10 S 120 0 Λ 10000 0 121 80 Surr: Dibromofluoromethane 12070 0 0 10 0 80 120 0 10320 0 10000 103 Surr: p-Bromofluorobenzene 10 n 80 120 0 10180 0 10000 0 102 Surr: Toluene-d8

Oualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

の見たたい いいににたい ひとし ひとし 一部務務会

R - RPD outside accepted recovery limits

Page 1 of 1

				Γ	Received	Date:			Cust. I	No.:
LABORATORIE	S	CH	AIN OF CUSTODY RECORD			l by: (g Bill #:	ips 5	-A1°c	Intact: Signa	dy Seal: Yes/No Yes/No iture Match?: Yes/No Reason:
	KUQ-735-4489 4UG-252-6325		258 (82602) waits 888-235-0515 1105 West First Street (82716) voice 30		HELENA P.O. Box	, MT 5688 (59604)		877-472-071	RAPID / P.O. Be) CITV, SD x 2470 (57709) watts 888-672-122.
P.O. # Projec	116-252-6169 Name / Mesa ione		Fax 307-234-1639	ine <u>O</u> ther		/	M Voice/Fax			nwood (57701) voice 605-342-122, Fax 605-342-139
W. Brice (435)		2221		f containers V U O Segetation <u>Uri</u> r		CHC Sequested				
Lab No. For Lab Use Only	DATE	TIME	Invoice to: TUC PO Box 809 Blanding UT 84511 Atta: Roy Derg Report to: Same as above	number of c pe: A W S V Soiis/Solids <u>V</u>	Analysi					
			SAME as above SAMPLEI.D. End Ky 2001 (1W Supp. Even	Sample Ty <u>A</u> ir <u>W</u> ater	6	¥ /			(Comments, Special Instructions, etc.
	6/20	1034 1042	WMMTW4-1	300						
	6/22	0404	WMMTW4-2 WMMTW4-3		┝╌╿╌┼╌					<u>.</u> i
	6/20	0436	WMMTW 4-4							
<u></u>	0/20	┟━┸┉╹┉╴╇╴	WMMTW4-5	1					·	<u> </u>
		9:58	WMMTW4-6 WMMTW4-B	310	┼┼┼				_	
			WMMTW4-9							
	6/21	OASD	WMMTW4-7-							
1. Relinguished (sig	6/17 Inature)	1	bate Time Received by: (signature) 2. F	Relinquishe	d (signatu	nre)	Date	Tin 1 / DC	~ I	Feceived lof Laboratory by

Image: Name / Phone # / Fax # Send Invoice to: Total Sort for Sort f	07-235-0515 07-234-1639
Project Name / Location / Purchase Order # / Bid # Type of Analyses Requested Special F $2^{\pm} a_{acreler}$ $2\omega_{1} c_{i} w s_{implog} while K mesa mill / Blanding, Wat Vat Type of Analyses Requested Special F Name / Phone # / Fax # Vat Vat$	
$\frac{6/21/01}{10} 0907 \sqrt{10} \frac{10}{10} \frac{10}{10$	
$\frac{6/21/01}{10} 0907 \sqrt{10} \frac{10}{10} \frac{10}{10$	
$\frac{6/21/01}{10} 0907 \sqrt{10} \frac{10}{10} \frac{10}{10$	
	tts, Special tions, etc.
1/21/01/1211 V Warm Two 4-11	
1/21/01/1211 V WMMTW 4-11 3-W	
6/22/01 1350 - " WMMTW 4-60mp 3-W -	

1. Sampler: (signature)	Date	Time	Received by: (signature)	2. Relinquished by: (signature)	Date	Time	Received hy: (signature)
/1 ////	6/25/01	Il:00	کر جن				
3. Relinquished by: (signature)	Date	Time	Received by: (signature)	4. Relinquished by: (signature)	Date	Time	Received at Laboratory by:
				0	alunor	1793	Sarat Vink
			L			nu	unger your

1 (1997) - 1997) 1997 - 1997) - 1997) 1997 - 1997) - 1997)

ACCE: HERE

Energy Laboratories, Inc. SAMPLE CONDITION REPORT

1002223

This report provides information about the condition of the sample(s), and assocated sample custody information on receipt at the laboratory.

Client: International Uranium (USA) CorporationDescription: WATERLab ID(s): 01-33939-1Thru 01-33939-14Matrix: Liquid, MiscDelivered by: UPS Date&Time Rec'd: 26-JUN-01 1000Date&Time Col'd: 21-JUN-01 1034Received by: Sara HawkenLogged In by: Tabitha Fassett

Chain of custody form completed & signed:	Yes	Comments:
Chain of custody seal:	No	Comments:
Chain of custody seal intact:	N/A	Comments:
Signature match, chain of custody vs. seal:	N/A	Comments:
Sample received Temperature:	5C	Comments:
Samples received within holding time:	Yes	Comments:
Samples received in proper containers:	Yes	Comments:
Samples Properly Preserved:	Yes	Comments:

Bottle Types Received: 39-40ML VOA NF HCL(ABC)

Comments:

Billings • Casper • Gillette Helena • Rapid City

ENERGY LABORATORIES, INC.

SHIPPING: 2393 SALT CREEK HIGHWAY • CASPER, WY 82601 MAILING: P.O. BOX 3258 • CASPER, WY 82602 E-mail: casper@energylab.com • FAX: (307) 234-1639 PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

LABORATORY ANALYSIS REPORT

Client: INTERNATIONAL URANIUM (USA) CORPORATION

Contact: Wally Brice

Sample Matrix: Liquid, Water

Date/Time Received: 06/26/2001 10:00

Report Date: July 11, 2001

•			
Laboratory ID	Sample Date / Time	Sample ID	Nitrate + Nitrite as N, mg/L
01-33936-1	06/21/2001 10:31	WMMTW4-1	8.81
01-33936-2	06/22/2001 10:38	WMMTW4-2	9.67
01-33936-3	06/21/2001 08:58	WMMTW4-3	2.61
01-33936-4	06/22/2001 09:34	WMMTW4-4	14.00
01-33936-5	06/20/2001 14:09	WMMTW4-5	6.47
01-33936-6	06/20/2001 09:45	WMMTW4-6	< 0.10
01-33936-7	06/21/2001 09:50	WMMTW4-7	2.65
01-33936-8	06/20/2001 12:51	WMMTW4-8	< 0.10
01-33936-9	06/20/2001 11:00	WMMTW4-9	0.15
01-33936-10	06/22/2001 11:20	WMMMW4	9.02
01-33936-11	06/21/2001 08:58	WMMTW4-10	2.96
01-33936-12	06/21/2001 12:15	WMMTW4-11	3.19
01-33936-13	06/21/2001 12:17	WMMTW4-12	0.66

Quality Assurance	e Data
Method	EPA 353.2
Reporting Limit	0.10
	0.0
RPD ¹ Spike ²	97
Analyst	rwk
Date / Time Analyzed	06/27/2001 14:18

NOTES:

(1) These values are an assessment of analytical precision. The acceptance range is 0-20% for sample results above 10 times the reporting limit. This range is not applicable to samples with results below 10 times the reporting limit.

(2) These values are an assessment of analytical accuracy. They are a percent recovery of the spike addition. ELI performs a matrix spike on 10 percent of all samples for each analytical method.

msh: r:\reports\clients2001\international_uranium_corp\liquid\33936-1-13.xls

TRACKING NO. PAGE NO. 33935800002

COMPLETE ANALYTICAL SERVICES

				•					Receive	ed Date:				Cust.	No: 7 10	16
	<u>IENER</u>	G		CU	ΙΑΙΝΙ ΩΕ Α	CUSTODY REC	CODD		Login [Date:				Custo	ody Seal:	Yes/No
	LABORATO	RIES	7	Un	AINOF	LUSIUDI KEG	JUKD			ed by: ng Bill #				Intac		Yes/No
_			-			PRINT OR TYPE ALL	·		Sampl	e Temp:	•	E	<u>ې چ</u>	Signi If no	ature Match?: - Reason:	Tes/INO
					INFORMATIC	ON EXCEPT SIGNATURI	ES	17	2)160	e Temp: ΣZ φ	nF	HzSO	YLA)		
Г					101	2		Ż	05K	2PO	FH	zSayl	AR.	Use Only	·	· · · · · · · · · · · · · · · · · · ·
	1120 South 27th (59101) - +	voice 400 Fax 40	0-735-4489 6-252-6325 6-252-6069	2393 Salt	3258 (82602)	GILLETTE, WY uns 888-235-0515 1105 West First Stree ire 307-235-0515 ux 307-234-1639		7-686-7175 7-682-4625		IA, MT x 5688 (5960 Ilings Ave. (5			77-472-071 06-442-071	/ P.O. B	arnwood (\$7701)	vans 888-672-1225 voice 605-342-1225 Fax 605-342-1397
	P.O. # Pro	oject l	Name /	Addres	is <u> </u>		<u> </u>	ē	<u></u>		7	7	7	7	777	144 00,0042-1907
					:		•	e <u>O</u> ther								
	Contact Name &	& Pho	ne		Sampler's Sig	nature		L rin		/ ه	/ /			/ /		/
	WhyBrice (4)	35)1	78-2	221	$\mathcal{F}_{i} = \mathcal{F}_{i} = \mathcal{F}_{i}$			container V U O Vegetation		Leste			/ /			/
					Invoice to: ILC			eget (, Bed		/ /			.	1
			ł	1	Po Bo	x 809 Ling, UT 84511		number of cont Type: A W S V U er <u>S</u> oiis/Solids <u>V</u> ege	, et	Luysis Requested	/ /		1.	/ /		
	Lab No.	1	DATE	TIME	Alln:	Rm Rena		nbei A W Is/So	4	\L\/			/ */			
	For Lab Use Onl	ly	DATE	TIME	Report to		. ·	vpe: . Soi		XV.		/ /				
					<u> </u>	me as above		nple Ty <u>W</u> ater		\mathbf{F}	/ /		/ /	/ /		ents, Special
					SAMPLELD	ZNA ZBOI CIN SAMP	La Em		$ \langle \gamma \rangle$	7 /			/ /		Instru	ictions, etc.
	339.36 -	,	<i>(</i> .).	1.7)			J	1	<u> </u>	-(-	-{	f f	{	-{	[
			6/21	1031	1001-11-1-1-100-			μŅ	거			┠╍╌┠╴		_		
		2	6/2:2/00	1038	WMMTW4	1-2			X							
	(.	3	6/21	0858	WMMTW	4-3			$ \mathbf{x} $							
		. 4	922/01		WMMTW	• •		\uparrow								······
			1					+				+		, , , , , , , , , , , , , , , , , , , 		<u>.</u>
		2	470	1404	WMMTW	4-5	·	·	X						<u> </u>	
Ś		- 6	4/20	9:45	WMMTWS	+6	•		X					/		
ు ట	RAC .	7		l	WMMTU				X							
60	-	8	6/20	125					X						3	
ं। :::ग		0	1.1	100				+				╂╍╍╊			· · · · · · · · · · · · · · · · · · ·	· · · ·
C D	<u>└</u> /	· 7	/20		WMMTW	<u>7-7</u>		22	X			┼╌┼				· · · · · · · · · · · · · · · · · · ·
د		· 10	6/22/2		WMM MW	4	· · · · · · · · · · · · · · · · · · ·		X	<u> </u>					6	. <u></u>
\sim	f. ¹ Relinquished	d (signi	ature)	61	Date Time	Received by: (signature	e) 2. R	elinquishe	d (signa	ture)		Date	Tin		Received for	Laporatoly by:
•. • •	1811		···	72	5/01 11:00-	ver					26	yng1	17EE	0t)arat	- Cart
		· · · · · ·			n Alexandra (Alexandra) Alexandra (Alexandra)			<u>.</u>			jurgazi	- Latin e str		- SASAN		

ENERGY ABORATORIES	CH	AIN OF CUSTODY RECORD PLEASE PRINT OR TYPE ALL INFORMATION EXCEPT SIGNATURES	Received Date: Cust. No.: Login Date: Custody Seal: Shipped by: Intact: Shipping Bill #: Signature Match?: Sample Temp: °C If no - Reason:	No
BILLINGS, MT 20, Box 30916 (59107) wants 800-735-4489 1120 South 27th (59101) water 406-252-6325 Fax 406-252-6069		WY GILLETTE, WY 1258 (82602) wattx 888-235-0515 1105 West First Street (82716) water 307-686-7175 Creek Highway (82601) water 307-235-0515 Fax 307-234-1639	HELENA, MT RAPID CITY, SD P.O. Box 5688 (59604) Wans 877-472-0711 P.O. Box 2470 (57709) wans 888 2704 Billings Ave. (59601) Voice/Fax 406-442-0711 610 Farmwood (57701) voice 605	342-1225
P.O. # Project Name / Whife Mes Contact Name & Phone Why Brice (435) &	<u>a Mil</u> 78-22	s IAIS S. Hosy 191, Ebnding, UT B4511 Sampler's Signature	Firs MIS	
Lab No. DATE For Lab Use Only	TIME	Invoice to: Impler is Signature Invoice to: Inthe Education Files 7 M 2 K 100 Po Box B69 Blanding. UT 84511 Attn: Ron Berg Report to: Sample Libe: Y M 2 K 100 Page As Above Supposed to Containers Provide Libe: Y M 2 K 100 Provide Libe: Y M 2 K 100 Pro	De lucreere Sonossion Legeneres, Si Comments, Si Instructions,	
33936-11 4/21	0/0	SAMPLE I.D. CHA 19 COULCI STIP. EUT.		
		1 > 10 - 20 - 21 - 21		
) -13 6/21/01		1 1 1 1 1 1 1 - 17		<u></u>
	1217			
				<u></u>
				<u></u>
::: :::				
é m				
Relinquished (signature)		Date Time Received by: (signature) 2. Relinquishe	hed (signature) Date Time Received for Labora (signature)	the by:

Energy Laboratories, Inc. SAMPLE CONDITION REPORT

This report provides information about the condition of the sample(s), and assocated sample custody information on receipt at the laboratory.

Client: International Uranium (USA) Corporation Description: WATER Lab ID(s): 01-33936-1 Thru 01-33936-13 Matrix: Liquid Delivered by: UPS Date&Time Rec'd: 26-JUN-01 1000 Date&Time Col'd: 21-JUN-01 1031 Received by: Sara Hawken Logged In by: Kerri Schroeder

Chain of custody form completed & signed:	Yes	Comments:
Chain of custody seal:	No	Comments:
Chain of custody seal intact:	N/A	Comments:
Signature match, chain of custody vs. seal:	N/A	Comments:
Sample received Temperature:	5C	Comments:
Samples received within holding time:	Yes	Comments:
Samples received in proper containers:	Yes	Comments:
Samples Properly Preserved:	Yes	Comments:

Bottle Types Received: 12-160Z P NF H2SO4 (A), 2-120Z P NF H2SO4 (AB)

Comments:

TRACKIUS 110. PAGE NO. 33935800005

Energy Laboratories, Inc.

REPORT PACKAGE SUMMARY - FINAL PAGE

Acronyms and Definitions

ELI-B Energy Laboratories, Inc. - Billings, Montana ELI-G Energy Laboratories, Inc. - Gillette, Wyoming ELI-H Energy Laboratories, Inc. - Helena, Montana ELI-R Energy Laboratories, Inc. - Rapid City,South Dakota co - Carry over from previous sample ip - Insufficient parameters N/A - Not Applicable NA - Not Analyzed ND - Analyte Not Detected at Stated Limit of Detection NR - Analyte Not Requested NST - No Sample Time Given NSD - No Sample Date Given

This Package Contains the following Client ID(s) and Lab ID(s)

Client ID: WMMMW4 is associated to Lab ID: 01-33936-10 Client ID: WMMTW4-1 is associated to Lab ID: 01-33936-1 Client ID: WMMTW4-10 is associated to Lab ID: 01-33936-11 Client ID: WMMTW4-11 is associated to Lab ID: 01-33936-12 Client ID: WMMTW4-12 is associated to Lab ID: 01-33936-13 Client ID: WMMTW4-2 is associated to Lab ID: 01-33936-2 Client ID: WMMTW4-3 is associated to Lab ID: 01-33936-3 Client ID: WMMTW4-4 is associated to Lab ID: 01-33936-3 Client ID: WMMTW4-5 is associated to Lab ID: 01-33936-4 Client ID: WMMTW4-6 is associated to Lab ID: 01-33936-5 Client ID: WMMTW4-6 is associated to Lab ID: 01-33936-5 Client ID: WMMTW4-6 is associated to Lab ID: 01-33936-6 Client ID: WMMTW4-7 is associated to Lab ID: 01-33936-6 Client ID: WMMTW4-7 is associated to Lab ID: 01-33936-6 Client ID: WMMTW4-8 is associated to Lab ID: 01-33936-7 Client ID: WMMTW4-8 is associated to Lab ID: 01-33936-8 Client ID: WMMTW4-9 is associated to Lab ID: 01-33936-9

Approved By:

JANES YOCUM QUALITY ASSURANCE DIRECTO

Reviewed By:

This is the last page of the Laboratory Analysis Report. Additional QC is available upon request. The report contains the number of pages indicated by the last 4 digits 33935R00006

Nov-09-01

From-IUC BLANDING 10:40am

801 678 2224

P.002/012 F-725

10/04/01 00:56 / rh

10/04/01 00:58 / m

10/04/01 00:56 / rh

10/04/01 00:56 / 市

10/04/01 00:56 / rh

TRADUCTO DO PAGE NA

sectanot con

同時の

たいとなっていた時にた

7-555

ENERGY LABORATORIES INC. - 2393 Salt Creek Highway (82601) . P.O. Box 78 · Casper, WY 82602 Toll Free 888,235.0515 · 307 0515 · Fax 307.234.1639 · casper@energylab.u · www.energylab.com

LABORATORY ANALYTICAL REPORT

Lab Order: C01090685 International Uranium (USA) Corp **Client:** 3rd Qtr CIW Sampling - White Mesa Mill **Project:** Report Date: 10/16/01 Lab ID: C01090685-001 Collection Date: 09/20/01 10:52 Client Sample ID: WMMTW4-2 DateReceived: 09/25/01 Matrix: AQUEOUS MCL/ Method Analyses Result Units Qual RL QCL Analysis Date / By VOCS 4900 400 Chloroform ug/L SW82608 Surr: 1,2-Dichlorobenzene-d4 101 %REC 80-120 SW8260B %REC Surr: Dibromofluoromethane 93,5 80-120 SW8260B Sum p-Bromofluorobenzene 83.0 %REC 80-120 SW8260B %REC SW8260B Sun: Toluene-d8 95.6 80-120 Lab ID: C01090685-002 Collection Date: 09/20/01 10:25 DateReceived: 09/25/01 Client Sample ID: WMMTW4-3 Matrix: AQUEOUS MCL/

Analyses	Result	Units	Qual	RL	QCL	Method	Analysis Date / By
VOCS							
Chloroform	300	ug/L		100		SW8260B	10/02/01 22:30 / m
Surr: 1,2-Dichlorobenzene-d4	102	%REC			80-120	SW8260B	10/02/01 22:30 / m
Surr: Dibromofluoromethane	109	%REC			80-120	SW8260B	10/02/01 22:30 / rh
Surr: p-Bromofluorobenzene	88.6	%REC			80-120	SW8260B	10/02/01 22:30 / m
Surr. Toluene-d8	96.9	%REC			80-120	SW8260B	10/02/01 22:30 / rh
Y	یند میں راحالہ سیزی کا اند میں ا ربان ·		• • • وينجلك هـ • • • ويكان			Callection Det	a. 00/20/01 10-50

Lab ID: C01090685-003

Client Sample ID: WMMTW4-4

Collection Date: 09/20/01 10:50 DateReceived: 09/25/01 Matrix: AQUEOUS

MCL/ Result Units Oual RL QCL Method Analysis Date / By Analyses VOCS 200 SW8260B 10/02/01 23:11 / m Chloroform 3200 ug/L Surr: 1,2-Dichlorobenzene-d4 %REC 80-120 SW8260B 10/02/01 23:11 / m 101 SW8260B 10/02/01 23:11 / m Surr: Dibromofluoromethane 107 %REC 80-120 88.9 %REC 80-120 \$W8250B 10/02/01 23:11 / rh Surr: p-Bromofluorobenzene SW8260B 10/02/01 23:11 / m 96.5 %REC 80-120 Surr; Toluene-d8

Report Definitions: ND - Not detected at the reporting limit MCL - Maximum contaminant level

RL - Analyte reporting level

QCL - Quality control limit

Nov-09-01

ABORATORIE

10:40am From-IUC BLANDING

801 678 2224

ENERGY LABORATORIE: 'NC. • 2393 Salt Creek Highway (82601) • P.O. Box ** "9 • Casper, WY 82602 Toll Free 888.235.0515 • 307; 0515 • Fax 307.234.1639 • casper@energylab.c. www.energylab.com

LABORATORY ANALYTICAL REPORT

Client: Project:	International Uranium (USA) Corp 3rd Qtr CIW Sampling - White Mesa M	111	
Lab ID: Client Sam	C01090685-004 ple ID: WMMTW4-5		<u></u>

Lab Order:	C01090685
Report Date:	10/16/01

Collection Date: 09/20/01 10:05 DateReceived: 09/25/01 Matrix: AQUEOUS

	MCL/							
Analyses	Result	Units	Qual	RL QCL		Method	Analysis Date / By	
VOCS								
Chloroform	240	ug/L		20		SW8260B	10/04/01 01:37 / rh	
Surr: 1,2-Dichlorobenzene-d4	100	%REC			80-120	SW8260B	10/04/01 01:37 / rh	
Surr. Dibromofluoromethane	92.5	%REC			80-120	SW8260B	10/04/01 01:37 / rh	
Surr. p-Bromofluorobenzene	82.8	%REC			80-120	SW82608	10/04/01 01:37 / m	
Sur: Toluene-d8	94.3	%REC			80-120	SW8260B	10/04/01 01:37 / m	

Lab ID: C01090685-005

Client Sample ID: WMMTW4-6

Collection Date: 09/20/01 09:16

DateReceived: 09/25/01

Matrix: AQUEOUS

	MCL/								
Analyses	Result	Units	Qual	RL	QCL	Method	Analysis Date / By		
VOCS									
Chioroform	3.6	ug/L		2.0		SW8260B	10/03/01 13:21 / m		
Surr: 1,2-Dichlorobenzene-d4	99.0	%REC			80-120	SW8260B	10/03/01 13:21 / rh		
Surr: Dibromofluoromethane	100	%REC			80-120	SW8260B	10/03/01 13;21 / rh		
Surr. p-Bromolluorobenzene	86.9	%REC			80-120	SW8260B	10/03/01 13:21 / rh		
Sur: Toluene-d8	98.1	%REC			80-120	SW8260B	10/03/01 13:21 / m		

Lab ID: C01090685-006

Client Sample ID: WMMTW4-7

Collection Date: 09/20/01 10:43

DateReceived: 09/25/01

Matrix: AQUEOUS

	MCL/							
Result	Units	Qual	RL	QCL	Method	Analysis Date / By		
1200	ug/L.		100		SW8260B	10/03/01 14:02 / rh		
98.9	%REC			80-120	SW8260B	10/03/01 14:02 / m		
98.6	%REC			80-120	SW8260B	10/03/01 14:02 / m		
88.7	%REĈ			80-120	SW8260B	10/03/01 14:02 / ሐ		
96.2	%REC			80-120	SW8260B	10/03/01 14:02 / rh		
	1200 98.9 98.6 88.7	1200 ug/L. 98.9 %REC 98.6 %REC 88.7 %REC	1200 ug/L 98.9 %REC 98.6 %REC 88.7 %REC	1200 ug/L. 100 98.9 %REC 98.6 %REC 88.7 %REC	Result Units Qual RL QCL 1200 ug/L 100 10	1200 ug/L. 100 SW8260B 98.9 %REC 80-120 SW8260B 98.6 %REC 80-120 SW8260B 88.7 %REC 80-120 SW8260B		

Report Definitions: ND - Not detected at the reporting limit

RL - Analyte reporting level

QCL - Quality control limit

MCL - Maximum contaminant level

TRACUUD DR. (MSE NO. 2035050000003

Nov-09-01 10:40am From-IUC BLANDING

ABORATORIES

ENERGY LABORATORIES "NC. • 2393 Salt Creek Highway (82601) • P.O. Box """ • Casper, WY 82602 Toll Free 888.235.0515 · 307. 3515 · Fax 307.234.1639 · casper@energylab.ci. · www.energylab.com

LABORATORY ANALYTICAL REPORT

Lab Order: C01090685 International Uranium (USA) Corp **Client:** 3rd Qtr CIW Sampling - White Mesa Mill **Project:** Report Date: 10/16/01 C01090685-007 Lab ID: Collection Date: 09/20/01 09:46 DateReceived: 09/25/01 Client Sample ID: WMMTW4-8

Matrix: AQUEOUS

T-555

					MCL/	14 1	
Analyses	Result	Units	Qual	RL	QCL	Method	Analysis Date / By
VOCS							
Chloroform	180	ug/L		10		SW82608	10/03/01 14:43 / m
Surr. 1,2-Dichlorobenzene-d4	99.4	%REC			80-120	SW8260B	10/03/01 14:43 / rh
Surr: Dibromofluoromethane	102	%REC			80-120	SW8260B	10/03/01 14:43 / rh
Sunt p-Bromofluorobenzene	87.8	%REC		· ·	80-120	5W8260B	10/03/01 14:43 / rh
Surr. Toluene-d8	95.9	%REC			80 -120	SW8260B	10/03/01 14:43 / rh
Lab ID: C01090685-008					(Collection Dat	te: 09/20/01 09:31

Client Sample ID: WMMTW4-9

DateReceived: 09/25/01

Matrix: AQUEOUS

					MCL/		
Analyses		Result	Units	Qual	RL QCL	Method	Analysis Date / By
VOCS	· · ·						
Chloroform		19	ug/L		2.0	SW8260B	10/04/01 02:27 / rh
Sunt 1,2-Dichloroben	zene-d4	99.2	%REC		80-12	0 SW8260B	10/04/01 02:27 / rh
Surn: Dibromofluorom	ethane	92.1	%REC		80-12	0 \$W8260B	10/04/01 02:27 / m
Sun: p-Bromofluorobe	inzene	84.8	%REC	٠	80-12	0 SW8260B	10/04/01 02:27 / m
Sur: Toluene-d8		97.3	%REC		80-12	0 SW8260B	10/04/01 02:27 / rh
Lab ID: C010906	85-009					Collection Dat	te: 09/20/01 11:20

Collection Date: 09/20/01 11:20 DateReceived: 09/25/01 Matrix: AQUEOUS

TRACKUP NO. PAGE NO.

20005200pgov

MCL/ Units Analyses Result Qual RL QCL Method Analysis Date / By VOCS 5300 SW8260B 10/03/01 16:04 / m Chloroform ug/L 400 Sur: 1.2-Dichlorobenzene-d4 102 %REC 80-120 SW8260B 10/03/01 16:04 / rh SW8260B Sun: Dibromofluoromethane 102 %REC 80-120 10/03/01 16:04 / rh SW8260B Surr: p-Bromofluorobenzene 87.2 %REC 80-120 10/03/01 16:04 / rh 96.7 %REC 80-120 SW8260B 10/03/01 16:04 / m Surr: Toluene-d8

Report

ND - Not detected at the reporting limit

RL - Analyte reporting level

QCL - Quality control limit

Definitions:

MCL - Maximum contaminant level

801 678 2224

P.004/012 F-725

STREES.

Client Sample ID: WMMMW4

801 678 2224

4

ENERGY LABORATORIES 'NC. • 2393 Salt Creek Highway (82601) • P.O. Box Casper, WY 82602 Toll Free 888.235.0515 • 307. 3515 • Fax 307.234.1639 • casper@energylab.c. www.energylab.com

LABORATORY ANALYTICAL REPORT

Client:	International Uranium (USA) Corp	Lab Order: C01090685
Project:	3rd Qtr CIW Sampling - White Mesa Mill	Report Date: 10/16/01
Lab ID:	C01090685-010	Collection Date: 08/22/01 10:20

Client Sample ID: Trip Blank

DatcReceived: 09/25/01 Matrix: AQUEOUS

			1		MCL/		·
Analyses	Result	Units	Qual	RL	QCL	Method	Analysis Date / By
VOCS			· ·				
Chloroform	ND	uğ/L		1.0		SW8260B	10/02/01 16:59 / rh
Surr: 1,2-Dichlorobenzene-d4	101	%REC			80-120	\$W8260B	10/02/01 16:59 / rh
Surr: Dibromofluoromethane	102	%REC			80-120	SW8260B	10/02/01 16:59 / m
Surr: p-Bromofluorobenzene	86.7	%REC			80-120	SW8260B	10/02/01 16:59 / rh
Surr: Toluene-d8	96.7	%REC			80-120	SW8260B	10/02/01 16:59 / rh
•							

Report Definitions: ND - Not detected at the reporting limit MCL - Maximum contaminant level RL - Analyte reporting level QCL - Quality control limit

> TRACKING DE FAGE NO. 99535200105

ENERGY LABORATORIES, INC.

P.O. BOX 3258 • CASPER, WY 82602 • 2393 SALT CREEK HIGHWAY • CASPER, WY 82601 PHONE (307) 235-0515 • FAX (307) 234-1639

CLIENT: International Uranium (USA) Corp Work Order: C01090685

ANALYTICAL QC SUMMARY REPORT

Date: 18-Oct-01

11.25

Project:

3rd Qtr CIW Sampling - White Mesa Mill

TestNo: SW8260B

Sample ID: Method Blank #	SampType: MBLK	TestCode: 1	VOC-8250-W-	SHT Unils: ug/L		Prep Date	1		Run ID: GCI	MS1-C_0110	101A
Client ID:	Batch iD: R2449	TestN	o: SW8260B			Analysis Date	: 10/1/200	01	SeqNo: 496	98	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LoviLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Chioroform	ND	1.0				·····			·····		
Sun: 1,2-Dichlorobenzene-d4	9.8	0	10	0	98	80	120	0	0		
Surr: Dibromofluoromethane	10.12	0	10	0	101	80	120	0	0		
Surr: p-Bromofluorobenzene	8.76	0	10	D	87.8	80	120	0	D		
Surr: Toluene-d8	9.68	0	10	0	96.8	80	120	0	0	. '	
Sample ID: Method Blank #	SampType: MBLK	TestCode:	VOC-8260-W-	SHT Units: ug/L	····	Prep Date	3:		Run ID: GC	MS1-C_0110	003C
Client ID:	Batch ID: R2461	Test	lo: SW8260B			Analysis Dal	e: 10/2/20	01	SeqNo: 497	/51	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qu
Chloroform	ND	1.0						4			
Sum: 1,2-Dichlorobenzene-d4	10.13	۵	10	0	101	80	120	٥	0		
Sun: Dibromofluoromethane	10.33	G	10	0	103	80	120	C	0		
Surr: p-Bromofluorobenzene	8.59	0	10	0	85.9	80	120	0	0		
Surr: Taluene-d8	9.6	0	10	0	96	80	120	0	0		
Sample ID: Method Blank #	SampType: MBLK	TestCode:	VOC-8260-W	-SHT Units: ug/I	-	Prep Dat	e:		Run ID: GC	MS1-C_011	003C
Client ID:	Batch ID: R2461	Test	No: SW8260B			Analysia Dal	e: 10/3/20	01	SegNo: 49	762	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qu
Chloroform	ND	1.0									
Surr: 1,2-Dichlarobenzene-d4	9.8	D	10	0	98	80	120	0	0	*****	
Şyrr: Dibromofluoromethane	10.12	0	10	0	101	- 80	120	D D	0		
Surr: p-Bromofluorobenzene	8.76	0	10	0	87.6	80	120	D	D		
Surr: Toluene-d8	9.68	0	10	0	96.8	60	120	0	0		
;											
Qualifiers: ND - Not Dete	cted at the Reporting Limit		S - Spi	ike Recovery outside	accepted rec	overy limits		B - Analyte detec	ted in the associ	aled Method I	Blank
I - Analyte det	ected below quantitation limit	ts	R - RP	Doutside accepted a	ecovery limit	5		· ,			
6	•				-						

	C01090685	l Uranium (USA) Corp 7 Sampling - White Me		ANALY	TICAL QC	SUM	MARY			Date: W8260B	18-Oct-01	
Sample ID: Method	Blank #	SampType: MBLK	TeslCode:	VOC-8260-W	SHT Units: ug/L		Prep Dal	le:		Run ID: GC	MS1-C_011	003C
Client ID:		Batch ID: R2461	Test	io: SW8260B		L	•	te: 10/4/20	31	SeqNo: 49		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloroform		ND	1.0	· · · · · · · · · · · · · · · · · · ·								
Surr: 1,2-Dichlor	benzene-d4	10.16	0	10	0	102	80	120	O	0		
Surr: Dibromoflue	oromeihane	10.07	0	10	0	101	80	120	Q	0		
Surr: p-Bromoflu	orobenzene	8.43	.0	10	0	84.3	60	120	0	0		
Surr: Toluene-d8		9.51	0	10	0	95.1	80	120	0	0		
Sample ID: C0109	1685-009A	SampType: MS	TestCode:	VOC-8260-W	-SHT Units: ug/L	<u> </u>	Prep Da	ite:		Run ID: GO	CMS1-C_011	001A
Client ID; WMMN	1W4	Batch ID: R2449	Test	10: SVY8260B	i		Analysis Da	le: 10/1/20	01	SeqNo: 49	729	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LovLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua1
Surr: 1,2-Dichlor	obenzana-d4	9980	Ð	10000	0	99.8	80	120	0	0		
Surr: Dibromatu	aromethene	9770	D	10000	0	97,7	60	120	0	0		
Surr: p-Bromoflu	orobenzene	8730	0	10000	0	87.3	80	120	Q	0		
Surr: Toluene-da	3	9620	0	10000	Ð	96.2	80	120	0	0		
Sample ID: C0109	0773-001A	SampType: MS	TestCode:	VOC-8260-W	-SHT Units: ug/L		Prep Da	ale:		Run ID: G	CMS1-C_011	003C
Client ID:		Balch ID; R2461	Test	No: SW8260E	Barris and Anna anna anna anna anna anna anna		Analysis Da	ate: 10/2/20	101	SeqNo: 49	752	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	R PD1im i l	Qua
Chloroform		51.9	5.0	50	. D	104	70	130	D	0		
Surr: 1,2-Dichlo	robenzene-d4	50.4	0	50	0	101	80	120	0	. 0		
Surr: Dibromofiu	oromelhane	52.75	Ð	50	- 0	105	80		0	0		
Syrr: p-Biomofil		43.45	D	50	Û	86,9			0	C		
, Surr: Toluene-d	B	47.75	D	50	O	95.5	80	120	0	0	* ·	
1 .?												
γ							•					
		······································									<u></u>	
Qualifiers:	ND - Not Dela	cled at the Reporting Limit		S - Sr	ike Recovery outside :	accepted rec	overv limits		B - Analyte dete	sted in the assoc	iated Method	Blank

 $\widehat{\chi}_{i}^{(1)},\widehat{\chi}_{i}^{(2)},\widehat{\chi}_{i}^{(2)}$

10:41am From-IUC BLANDING

· j

Nov-09-01

801 678 2224

;

1.03/2011

Vork Order: C01090685	l Uranium (USA) Corp 7 Sampling - White Me		ANALY	TICAL QC	SUMI	MARY I			Date: 3 W8260B	18-Oct-01	
Sample ID: C01090685-009A	SampType: MS	TesiCode:	VOC-8260-W	SHT Units: ug/L	_	Prep Date		<u> </u>	Run ID: GCI	481-C_0110	03C
Client ID: WMMMW4	Batch ID: R2461	TestN	io: SW8260B		•	Analysis Dale	a: 10/3/201	91	SeqNo: 497	63	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chleroform	16180	1000	10000	5280	109	70	130	Q	0	· · · · · · · · · · · · · · · · · · ·	
Surr: 1,2-Dichlorobenzene-d4	9980	0	10000	0	99.8		120	Q	0		
Surr: Dibromofluoromethane	9770	0	10000	O	97.7	08	120	0	0		
Sun: p-Bromofluorobenzene	8730	0	10000	0	87.3	80	120	0	0		
Sun: Tolvene-dB	9620	0	10000	0	96.2	80	120	0	0		
Sample ID: C01090695-012A	SampType: MS	TestCode:	VOC-8260-W	-SHT Units: ug/L		Prep Date	e:		Run ID: GC	MS1-C_0110	0 03C
Client ID:	Balch ID: R2461	Tesli	No: SW8260B	;		Analysis Date	e: 10/5/20	01	SeqNo: 497	70	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Chloroform	1047	50	1000	0	105	70	130	0	0		
Surr: 1,2-Dichlorobenzene-d4	996	0	1000	· 0	99,6	80	120	. 0	0		
Surr: Dibromofluoromethane	982	0	1000	Û	98,2	80	120	D	0		
Surr: p-Bromofluorobenzene	875	0	1000	Q	87.5	80	120	٥	0		
Surr: Toluene-d8	970	0	1000	0	97	80	120	0	0		
Sample ID: C01090685-009A	SampType: MSD	TestCode:	VOC-8260-W	I-SHT Units: ug/L		Prep Dat	ю;		Run ID: GO	MS1-C_011	001A
Client ID: WMMMW4	Balch ID: R2449	Test	No: SW8260 E	3 -		Analysis Dal	le: 10/1/20	01	SeqNo: 49	730	
Analyle	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qu
Chloraform	15750	1000	10000	5280	105	70	130	16180	2.69	20	
Surr: 1,2-Dichlorobenzene-d4	10030	· · 0	10000	0	100	80	120	Ď	0	10	
Surr: Dibromolluoromethane	9850	0	10000		98.5	80	120) D	0	10	
Sürr: p-Bromofluprobenzene	87 9 0	0	10000		87.9	08	120	0	0	10	
Sutr. Toluene-d8	9650	0	10000	0 O	96.5	60	120	0	_ · D	10	
Qualliers: ND - Noi Dete	cted at the Reporting Limit		S - Sr	nike Recovery outside	accepted rec	overy limits		B - Analyte detec	led in the associ	ated Method I	Blank
1 i	tected below quantitation lim		•	PD outside accepted re	•			,			

.

Nov-09-01

T-555 P.008/012 F-725

CLIENT: International Uranium (USA) Corp Work Order: C01090685

ANALYTICAL QC SUMMARY REPORT

Date: 18-Oct-01

Project: 3rd Qtr CIW Sampling - White Mesa Mill

TestNo: SW8260B

Sample ID: C01090773-001A	SampType: MSD	TesiCode: '	VOC-8260-W-	SHT Units: ug/L		Prep Date	3:		Run ID: GCI	MS1-C_0110	03C
Client ID:	Batch 1D: R2461	TestA	a: SW8260B		. A	Analysis Date	e: 10/2/200	D1	SeqNo: 497	53	
Analyle	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloroform	52.7	5.0	50	0	105	70	130	51.9	1.53	20	
Surr: 1,2-Dichlorobenzene-d4	51,9	0	50	0	104	80	120	0	0	10	
Surr: Dibromofluoromethane	53.8	0	50	0	108	80	120	. 0	0	10	
Surr: p-Bromailvorabenzene	44.15	0	50	· 0	88.3	80	120	0	0	10	
Surr: Tolvene-d8	48.5	0	50	Û	97	80	120	D	, D	10	
Sample ID: C01090685-009A	SampType: MSD	TestCode:	VOC-B26D-W-	SHT Units: ug/L		Prep Dal	6:		Run (D; GC	MS1-C_0110	03C
Client ID: WMMMW4	Baich ID: R2461	Test	lo: SW8260B			Analysis Dat	e: 10/3/20	01	SeqNo: 497	64	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloroform	15750	1000	10000	5280	105	70	130	16180	2.69	20	
Surr: 1,2-Dichlorobenzene-d4	10030	0	10000	0	100	80	120	0	0	10	
Surr: Dibromofluoromethane	9850	0	10000	0	98.5	80	120	٥	0	10	
Surr: p-Bromofluorobenzene	8790	0	10000	0	87.9	BD	120	0	0	10	
Surr: Toluene-d8	9650	0	10000	Ŭ	96.5	80	120	0	0	10	
Sample ID: C01090595-012A	SampType: MSD	TeslCode:	VOC-8260-W	-SHT Units: ug/L		Prep Da	te:		Run ID: GO	MS1-C_011	003C
Client ID:	Batch ID: R2461	Tesl	No: SW82608			Analysis Da	te: 10/5/20	001	SeqNo: 49	771	÷
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Lov/Limit	HighLimil	RPD Ref Val	%RPD	RPDLimil	Qual
Chloroform	1073	50	1000	0	107	70	130	1047	2.45	20	
Surr: 1,2-Dichlorobenzene-d4	1001	0	1000	0	100	80	120	0	0	10	7
Surr: Dibromofluoromethane	1035	0-	1000	0	104	80	120	0	0	10	
Sur: p-Bromoßuorobenzena	870	0	1000	0	87	80	120	0	· O	10	
Surr: Toluene-d8	961	O	1000	0	96.1	80	120	D	0	10	
					1. A						
ry - 印 [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]								• .			
									· · · · · · · · · · · · · · · · · · ·	·	
	ected at the Reporting Limit		S - Sp	ike Recovery outside a	ccepted rec	overy limits		B - Analyte detec	ted in the associ	aled Method I	Blank
J - Analyte del	lected below quantitation lin	nits	R - RI	D outside accepted re	covery limit	5					

T-555

· · · ·

253

19.7 W 14.1

Nov-09-01 10:42am From-IUC BLANDING

801 678 2224

T-555 P.010/012 F-725

100.255

Market 1

ENERGY LABORATORIES ENERGY LABORATORIES, INC. · 2393 Salt Creek Highway (82601) · P.O. Box-2258 · Casper, WY 82502 Toll Free 888.235.0515 · 3C 15.0515 · Fax 307.234.1639 · casper@energylaL 1 · www.energylab.com

LABORATORY ANALYTICAL REPORT

Client: International Uranium (US Project: 3rd Quarter 2001 Sampling	-	ite Mcsa M	ill	*.	- - -	Lab Order: C0 Report Date: 10/	1090647 /04/01
Lab ID: C01090647-001 Client Sample ID: WMMTW4-1			· · · ·			Collection Date: DateReceived: Matrix:	
Analyses	Result	Units	Qual	RL	MCL/ QCL	Method	Analysis Date / By
NON-METALS Nitrogen, Nitrate+Nitrite as N	12.8	mg/L		0.50	*	E353.2	09/28/01 19:27 / rwk
Lab ID: C01090647-002 Client Sample ID: WMMTW4-2						Collection Date: DateReceived: Matrix:	
Analyses	Result	Units	Qual	RL	MCL/ QCL	Method	Analysis Date / By
NON-METALS Nitrogen, Nitrate+Nitrite as N	11.4	mg/L		0.50		E353.2	09/26/01 19:29 / rwk
Lab ID: C01090647-003 Client Sample ID: WMMTW4-3						Collection Date: DateReceived: Matrix:	··· · · ·
Analyses	Result	Units	Qual		MCL/ QCL	Method	Analysis Date / By
NON-METALS Nitrogen, Nitrate+Nitrite as N	3.06	mg/L		0.10		E353.2	09/26/01 19:33 / rwk
Lab ID: C01090647-004 Client Sample ID: WMMTW4-4	÷.					Collection Date: DateReceived: Matrix:	
Analyses	Result	Units	Qual		MCL/ QCL	Method	Analysis Date / By
NON-METALS Nitrogen, Nitrate+Nitrite as N	14.8	mġ∕L		1.00		E353.2	09/26/01 19:39 / rwk

Report Definitions: ND - Not detected at the reporting limit MCL - Maximum contaminant level RL - Analyte reporting level

QCL - Quality control limit

801 678 2224

10.2350.1

ENERGY LABORATORIES

Nov-09-01

LABORATORY ANALYTICAL REPORT

ENERGY LABORATORIES, INC. · 2393 Salt Creek Highway (62601) · P.O. Box. 3258 · Casper, WY 82002 Toll Free 888.235.0515 · 30 ` `5.0515 · Fax 307.234.1639 · casper@energylab. · · www.energylab.com

Client: International Uranium (US Project: 3rd Quarter 2001 Samplin		ite Mesa N	1 11			Order: C01090647 t Date: 10/04/01		
Lab ID: C01090647-005 Client Sample ID: WMMTW4-5					DateReceived:	: 09/20/01 10:10 : 09/25/01 : AQUEOUS		
Analyses	Result	Units	Qual	MCL RL QCL		Analysis Date / By		
NON-METALS Nitrogen, Nitrate+Nitrite as N	2.10	mg/L		0.50	E35 3.2	09/26/01 19:41 / rwi		
Lab ID: C01090647-006 Client Sample ID: WMMTW4-6			·.	· · · · · · · · · · · · · · · · · · ·	Collection Date: DateReccived: Matrix:			
Analyses	Result	Units	Qual	MCL RL QCL		Analysis Date / By		
NON-METALS Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.10	E353.2	09/26/01 19:43 / rwi		
Lab ID: C01090647-007					Collection Date:			
Client Sample ID: WMMTW4-7					DateRcceived: Matrix:	AQUEOUS		
Analyses	Result	Units	Qual	MCL RL QCL	Method	Analysis Date / By		
NON-METALS Nitrogen, Nitrate+Nitrite as N	3.38	mg/L		0.20	E353.2	09/26/01 19:45 / rw		
Lab ID: C01090647-008 Client Sample ID: WMMTW4-8					Collection Date: DateReceived: Matrix:			
Analyses	Result	Units	Qual	MCL/ RL QCL	Method	Analysis Date / By		
NON-METALS Nitrogen, Nitrate+Nitrite as N	0.35	mg/L		0.10	E353.2	09/26/01 19:47 / rwk		

Report Definitions: ND - Not detected at the reporting limit MCL - Maximum contaminant level RL - Analyte reporting level

QCL - Quality control limit

TRACKING (D. PAGE ND. 90317000000 Nov-09-01 10:42am From-IUC BLANDING

801 678 2224

T-555 P.012/012 F-725

÷2

ENERGY DABORATORIES ENERGY LABORATORIES, INC. • 2393 Sall Creek Highway (82001) - P.O. Box 9258 • Casper, WY 82602 Toll Free 888.235.0515 • 30: 5.0515 • Fax 307.234.1639 • casper@energylab: • www.energylab.com

LABORATORY ANALYTICAL REPORT

Client: International Uranium (US Project: 3rd Quarter 2001 Sampling	· -	te Mesa M	ill		Lab Order: CC Report Date: 10	
Lab ID: C01090647-009 Client Sample ID: WMMTW4-9					DateReceived	: 09/20/01 09:33 : 09/25/01 : AQUEOUS
Analyses	Result	Units	Qual	M RL Q	CL/ CL Method	Analysis Date / By
NON-METALS Nitrogen, Nitrate+Nitrite as N	0.40	mg/L		0.10	E353.2	09/25/01 19:53 / rwk
Lab ID: C01090647-010 Client Sample ID: WMMMTW4					Collection Date: DateReceived: Matrix:	
Analyses	Result	Units	Qual	M RL Q	CL/ CL Method	Analysis Date / By
NON-METALS Nitrogen, Nitrate+Nitrite as N	9.45	mg/L		0.50	E353.2	09/26/01 19:55 / זעאג
Lab ID: C01090647-011 Client Sample ID: WMMTW4-10	·.	· · · · ·			Collection Date: DateReceived: Matrix:	
Analyses	Result	Units	Qual	MO RL QO		Analysis Date / By

 NON-METALS

 Nitrogen, Nitrate+Nitrite as N
 2.32 mg/L
 0.20
 E353.2
 09/26/01 20:01 / wk

Report Definitions: ND - Not detected at the reporting limit MCL - Maximum contaminant level RL - Analyte reporting level QCL - Quality control limit

> TRACING NO. RACE NO. 9435577000005

APPENDIX E

U.S.G.S Manual Chapter 6.5 and Hydrolab Parameter Specifications

Water Resources--Office of Water Quality

This document is also available in pdf format:

📆 <u>Chapter 6.5.pdf</u>

6.5 REDUCTION-OXIDATION POTENTIAL (ELECTRODE METHOD)

Reduction-oxidation potential (as Eh): a measure of the equilibrium potential, relative to the standard hydrogen electrode, developed at the interface between a noble metal electrode and an aqueous solution containing electroactive redox species.

In contrast to other field measurements, the determination of the reduction-oxidation potential of water (referred to as redox) should not be considered a routine determination. Measurement of redox potential, described here as Eh measurement, is not recommended in general because of the difficulties inherent in its theoretical concept and its practical measurement (see "Interferences and Limitations," <u>section</u> <u>6.5.3.A</u>).

- Eh measurement may show qualitative trends but generally cannot be interpreted as equilibrium values.
- Determinations of redox using the platinum (or other noble metal) electrode method (Eh) are valid only when redox species are (a) electroactive, and (b) present in the solution at concentrations of about 10⁻⁵ molal and higher. Redox species in natural waters generally do not reach equilibrium with metal electrodes.

Procedures for equipment calibration (test procedures) and Eh measurement are described in this section for the platinum electrode only. Although the general guidance given here applies to other types of redox electrodes (such as gold and glassy carbon electrodes), it is necessary to consult the manufacturer's instructions for correct use of the specific electrode selected. Concentrations of redox species can be determined by direct chemical analysis instead of using the electrode method (Baedecker and Cozzarelli, 1992).

⇒ Section 6.5.1

Return to Chapter A6 Contents Page

- Return to Field Manual Complete Contents
- Return to Water Quality Information Pages

Maintainer: Office of Water Quality Webversion by: Genevieve Comfort Last Modified: 16JUNE98 ghc Return to Contents for 6.5--Reduction Oxidation Potential (Electrode Method)

Water Resources--Office of Water Quality

This document is also available in pdf format:

Chapter 6.5.1.pdf

6.5.1 EQUIPMENT AND SUPPLIES

The equipment and supplies needed for making Eh measurements using the platinum electrode method are listed in table 6.5-1. Eh equipment must be tested before each field trip and cleaned soon after use. Every instrument system used for Eh measurement must have a log book in which all the equipment repairs and calibrations or equipment tests are recorded, along with the manufacturer make and model numbers and serial or property number.

Electrodes. Select either a redox-sensing combination electrode or an electrode pair (a platinum and reference electrode). Use of the correct electrolyte filling solution is essential to proper measurement and is specified by the electrode manufacturer. Orion Company, for example, recommends selection of a filling solution to best match the ionic strength of the sample solution, in order to minimize junction potentials.

Table 6.5–1. Equipment and supplies used for Eh measurements¹ [mV, millivolt; ±, plus or minus; µS/cm, microsiemens per centimeter at 25 degrees Celsius] Millivolt meter or pH meter with millivolt reading capability, preferably with automatic temperature compensator; 0.1-mV sensitivity; scale to at least ±1,400 mV; BNC connector (see instrument specifications for pH meters, 6.4.1 in NFM 6.4) Redox electrodes, either (a) platinum and reference electrode (calomel or silver:silverchloride) or (b) combination electrode Electrode filling solutions (refer to manufacturer's specifications) Thermometer (liquid-in-glass or thermistor type), calibrated (see NFM 6.1 for selection and calibration criteria)-for use with millivolt meters without temperature compensator ' Flowthrough cell with valves, tubing, and accessories impermeable to air (for use with pump system) Sampling system: (1) in situ (downhole) measurement instrument, or (2) submersible pump (used with closed-system flowthrough cell). Pump tubing must be "impermeable" to oxygen. ZoBell's solution Aqua regia or manufacturer's recommended electrode-cleaning solution Liquid nonphosphate laboratory-grade detergent ✓ Mild abrasive: crocus cloth or 400- to 600-grit wet/dry Carborundum™ paper Deionized water (maximum conductivity of 1.0 µS/cm) ✓ Bottle, squeeze dispenser for deionized water 🖌 Safety equipment: gloves, glasses, apron, chemical spill kit 🖌 Paper tissues, disposable, lint free Waste-disposal container 'Modify this list to meet specific needs of the field effort. and the second second

CAUTION: The standard hydrogen reference electrode (SHE) can be dangerous and is not recommended for field use.

- Silver:silver-chloride or calomel reference electrodes are the redox electrodes in common use.
- ► The OrionTM combination electrodes are platinum redox and silver: silver-chloride reference electrodes in one body (the OrionTM brand is used for purposes of illustration only).

ZoBell's solution. ZoBell's is the standard solution for testing redox instruments. ZoBell's solution can be obtained from the QWSU in Ocala, Fla., or it can be prepared fresh (see below). Quinhydrone solution is sometimes used but is not recommended because it is significantly less stable above 30°C and its temperature dependence is not as well defined as that of ZoBell's.

ZoBell's solution consists of a 0.1 molal KCl solution containing equimolal amounts of $K_4Fe(CN)_6$ and $K_3Fe(CN)_6$. ZoBell's is reported stable for at least 90 days if kept chilled at 4°C. To prepare ZoBell's solution:

1. Weigh the chemicals (dry chemicals should be stored overnight in a desiccator before use).

1.4080 g K_4 Fe(CN)₆·3H₂0 (Potassium ferrocyanide)

1.0975 g K₃Fe(CN)₆ (Potassium ferricyanide)

7.4557 g KCl (Potassium chloride)

- 2. Dissolve these chemicals in deionized water and dilute solution to 1,000 mL.
- 3. Store the solution in a dark bottle, clearly labeled with its chemical contents, preparation date, and expiration date. Keep the solution chilled.

CAUTION: ZoBell's solution is toxic—handle with care.

Aqua regia. Aqua regia can be used for cleaning the Eh electrode (check the electrode manufacturer's recommendations). Prepare the aqua regia at the time of use--do not store it. To prepare the aqua regia, mix 1 volume concentrated nitric acid with 3 volumes of concentrated hydrochloric acid.

6.5.1.A MAINTENANCE, CLEANING, AND STORAGE

Refer to 6.4.1 of <u>NFM 6.4</u> on pH for general guidelines on meter and electrode maintenance, cleaning, and storage. Follow the manufacturer's guidelines on the operation and maintenance of the meters and electrodes, and keep a copy of the instruction manual with each instrument system. Keep the meters and electrodes clean of dust and chemical spills, and handle them with care.

Maintenance

Keep the surface of noble electrodes clean of coatings or mineral deposits. A brightly polished metal surface prevents deterioration of electrode response. The billet tip is more easily cleaned than the wire tip on the platinum electrode. Condition and maintain the Eh electrodes as recommended by the manufacturer.

Cleaning

Keep the O-ring on electrodes moist during cleaning procedures.

- ▶ To remove precipitate that forms on the outside wall or tip of the reference or combination electrode, rinse the outside of the electrode with deionized water.
- ▶ If particulates or precipitates lodge in the space between the electrode sleeve and the inner cone of sleeve-type electrode junctions, clean the chamber by flushing out the filling solution (the precise procedure to be followed must come from the electrode manufacturer).
- ► To remove oily residues, use a liquid nonphosphate detergent solution and polish the surface with mild abrasive such as coarse cloth, a hard eraser, or 400- to 600-grit wet/dry CarborundumTM paper (Bricker, 1982).
- ► To recondition the Eh electrode, immerse the electrode in warm aqua regia (70°C) for about 1 minute. **Do not immerse the electrode for longer than 1 minute** because aqua regia dissolves the noble metal as well as foreign matter and leads to an erratic electrode response (Bricker, 1982). Soak the electrode several hours in tap water before use.

TECHNICAL NOTE: Disassembly of the electrode is not recommended for routine cleaning and should only be used when absolutely needed. Additional cleaning and reconditioning procedures are discussed in <u>NFM 6.4</u> and in American Public Health Association and others (1992), American Society for Testing and Materials (1990), Edmunds (1973), Adams (1969), and Callame (1968).

Storage

For short-term storage, immerse the electrode in deionized water to above the electrode junction and keep the fill hole plugged to reduce evaporation of the filling solution. The recommended procedures for long-term storage of electrodes vary with the type of electrode and by manufacturer. The OrionTM combination electrodes are stored dry after rinsing precipitates from outside of the electrode, draining the filling solution from the chamber, and flushing it with water (consult the manufacturer's cleaning instructions). The electrode connector ends must be kept clean. Clean them with alcohol, if necessary. Store the connector ends in a plastic bag when not in use.

Some of the procedures recommended herein for equipment operation may be out of date if the equipment being used is different from that described or incorporates more recent technological advances—follow the manufacturer's instructions.

 \Rightarrow Section 6.5.2

Return to Section 6.5

Return to Contents for 6.5--Reduction Oxidation Potential (Electrode Method)

Return to Chapter A6 Contents Page

Return to Field Manual Complete Contents

Return to Water Quality Information Pages

Maintainer: Office of Water Quality Webversion by: Genevieve Comfort Last Modified: 16JUNE98 ghc

Water Resources--Office of Water Quality

This document is also available in pdf format:

Chapter 6.5.2.pdf

6.5.2 EQUIPMENT TEST PROCEDURE

Eh measuring systems can be tested for accuracy but they cannot be adjusted. Eh equipment must be tested, either in the laboratory or in the field, against a ZoBell's standard solution before making field measurements. In general, field testing with ZoBell's is not required, but the protocol used will depend on study needs.

- Before using, check that the ZoBell's solution has not exceeded its shelf life.
- ▶ Test the Eh equipment using the ZoBell's solution before and after field use.
- Be aware that:
 - -- ZoBell's is toxic and needs to be handled with care.
 - -- ZoBell's reacts readily with minute particles of iron, dust, and other substances, making field use potentially difficult and messy.

The Eh measurements are made by inserting a platinum electrode coupled with a reference electrode into the solution to be measured. The resulting potential, read directly in millivolts from a potentiometer (such as a pH meter), is corrected for the difference between the standard potential of the reference electrode being used at the solution temperature and the potential of the standard hydrogen electrode table 6.5-2).

TECHNICAL NOTE: E_{ref} is the whole-cell potential of the reference electrode in ZoBell's solution.

 $E_{ref} = 238 \text{ mV}$ (saturated KCl, immersed with the platinum electrode in ZoBell's at 25°C) is the measured potential of the silver:silver-chloride (Ag:AgCl) electrode;

 E_{ref} = 185.5 mV (saturated KCl, immersed with the platinum electrode in ZoBell's at 25°C) is the measured potential of the calomel (Hg:HgCl₂) electrode;

 $E^{\circ} = 430 \text{ mV}$ is the standard electrode potential of ZoBell's solution measured against the hydrogen electrode at 25°C.

Half-cell potentials for the calomel, silver:silver chloride, and combination electrodes are shown in <u>table</u> <u>6.5-2</u>. <u>Table 6.5-3</u> provides the theoretical Eh of ZoBell's solution as a function of temperature. For those temperatures not shown on tables <u>6.5-2</u> and <u>6.5-3</u>, interpolate the values. Add the value corresponding to the solution temperature to the measured potential electromotive force (emf measurement).

Table 6.5-2. Standard half-cell potentials of selected reference electrodes as a function of temperature and potassium chloride reference-solution concentration, in volts

[Liquid-junction potential included—multiply volts by 1,000 to convert to millivolts; KCl, potassium chloride; Temp °C, temperature in degrees Celsius; M, molar; —, value not provided in reference]

	Sih	er:silver.ch)	onde	er en	Calom	d ¹		Orion ⁷⁴⁹⁶⁻⁷⁸
Temp •C	3M KCI ¹	3.544 ICI ²	Saturated KCI ²	3M KC) ²	3.564 KCI ²	444 KCI 2	NCI saturated	combine- tion 3.4 electrode
10	0.220	0.215	D.214	0.280	0.258	-	D.254	0.256
15	0.216	0.212	0.209		·		0.251	0.253
20	0.213	0.208	0.204	0.257	0.252	-	0.248	D.249
25	0.209	0.205	D. 199	0.255	0.250	0.246	0.244	0,246
30	0.205	0.201	D. 194	0.253	D.248	0.244	0.241	0.242
35	0.202	D. 197	D, 189		_	_	0.238	0.238
40	0,198	0.193	D. 184	0.249	0.244	0.239	0.234	0.234

Modified from Langmuir (1971).

²Modified from Bates (1973).

⁹Nordstrom (1977) and D.K. Nordstrom, U.S. Geological Survey, written commun., 1995; the half-cell potentials calculated from Nordstrom (1977) are recommended rather than the values from Chateau (1954) cited in the instrument manual provided by the Orion Company because Nordstrom's values were developed specifically for the Orion "95-78 redox electrode and provide greater accuracy and precision.

⁴Orion⁷⁸ manufacturer recommends that for sample solutions with total ionic strength exceeding 0.2 molar (for example, seawater), use a 4M KCI-saturated filling solution (usually supplied with the Orion⁷⁸ model 97-78 electrode) and the half-cell potentials shown above for the silver:silver chloride saturated KCI reference electrode.

[From Nordstrom (1977); °C, degrees Celsius; mV, millivolts]				
Temperature "C	Eh (mV)	Temperature 9C (continued)	, Eh (mV) (continu	
10	467	26	428	
12	462	28	423	
14	457	30	418	
16	4.53	32	416	
18	448	34	407	
20	443	36	402	
22	438	38	397	
24	433	40	393	

To test Eh equipment, complete the following 7 steps and record results on the Eh data record form for the equipment test procedure (fig. 6.5-1):

- 1. Follow the manufacturers' recommendations for instrument warm up and operation.
 - Set the scale to the desired millivolt range.
 - Record the type of reference electrode being used.
- 2. Unplug the fill hole. Shake the electrode gently to remove air bubbles from the sensing tip of the electrode. Check the level of the filling solution and replenish to the bottom of the fill hole.
 - The filling solution level must be at least 1 in. above the level of solution being measured.
 - Use only the filling solution specified by the manufacturer.
- 3. Rinse the electrode, thermometer, and measurement beaker with deionized water. Blot (do not

wipe) excess moisture from the electrode.

- 4. Pour ZoBell's solution into a measurement beaker containing the electrode and temperature sensor.
 - The Eh electrode must not touch the bottom or side of the container.
 - Add enough solution to cover the reference junction.
 - Allow 15 to 30 minutes for the solution and sensors to equilibrate to ambient temperature.
- 5. Stir slowly with a magnetic stirrer (or swirl manually) to establish equilibrium between the electrode(s) and solution. Switch the meter to the millivolt function, allow the reading to stabilize (±5 mV), and record the temperature and millivolt value.
- 6. Look up the half-cell reference potential for the electrode being used (<u>table 6.5-2</u>). Add this value to the measured potential to obtain the Eh of ZoBell's at ambient temperature.
 - If the value is within 5 mV of the ZoBell Eh given on <u>table 6.5-3</u>, the equipment is ready for field use. (See the example below.)
 - Refer to section 6.5.4 if the value is not within 5 mV of the ZoBell Eh.
- 7. Rinse off the electrodes and the thermometer thoroughly with deionized water. Store the test solution temporarily for possible verification.

EXAMPLE:

Example of the equipment test procedure using a silver:silver chloride-saturated KCl (Ag:AgCl) electrode.

$$Eh = emf + E_{ref}$$

where:

Eh is the potential (in millivolts) of the sample solution relative to the standard hydrogen electrode,

emf or $E_{measured}$ is the electromotive force or potential (in millivolts) of the water measured at the sample temperature,

 E_{ref} is the reference electrode potential of the ZoBell's solution corrected for the sample temperature (<u>table 6.5-2</u>).

- a. Follow steps 1-5 (above). For this example,
 - Measured temperature = 22°C
 - emf = 238 mV.
- b. Check <u>table 6.5-2</u>. The interpolated reference potential = 202 mV for Ag:AgCl-saturated KCl at 22°C.
- c. From $Eh = emf + E_{ref}$

Eh (ZoBell's) = 238 mV + 202 mV = 440 mV.

d. Check <u>table 6.5-3</u>. The test value of 440 mV is within ± 5 mV of 438 mV from <u>table 6.5-3</u>. Thus, the equipment is functioning well and ready for field use.

Check the date on Zobell's solution-do not use solution past its expiration date.

Eh Data R	lecord		
Equipment Test	Proced	lure	
Equipment description and identification (model a	and ser	ial and/or W number	}:
Meter			
Eh electrode R	eferenc	ce electrode	
ZoBell's solution: Lot # Date: prep	ered	expired	
			· .
		Before sam pla Eh:	After sem ple Eh:
1. Temperature of ZoBell's solution:			• • • • • • • • • • • • • • • • • • •
(after equilibration to ambient temperature)			
2. Observed potential (in millivolts) of ZoBell's	4		
relative to measuring electrode, at	•		
am bîent tem persture (E _{m easured} or <i>em î</i>):	em f =	. <u></u>	
3. Reference electrode potential (in millivolta)			
at ambient temperature from table 8.5–2			
(E _{ref}):	E _{ref} =		
4. Calculate Eh of ZoBell's: Eh = emf+E _{ref}	Eh=		
5. Theoretical potential (in millivolts)			
of ZoBell's at am bient tem perature from table 6.5–3: Eh (theore	linnli.	-	
	ncaii=		······································
6. Subtract calculated Eh from Eh theoretical			
(Zobell's)(step 4 minus step 5)	∆Eh=		
• •			· · · · · ·
7. Check: is Δ Eh within ± 5 mV? Observa	tions:		
igure 6.5–1. Eh data record: equipment	test p	procedure.	

⇒ Section 6.5.3

- **A**Return to Section 6.5.1
- Preturn to Contents for 6.5--Reduction Oxidation Potential (Electrode Method)
- Return to Chapter A6 Contents Page
- Peturn to Field Manual Complete Contents
- Return to Water Quality Information Pages

Maintainer: Office of Water Quality

Water Resources--Office of Water Quality

This document is also available in pdf format:

Chapter 6.5.3.pdf

6.5.3 MEASUREMENT

To obtain accurate results, it is necessary to prevent losses and gains of dissolved gases in solution. Consult $\underline{NFM 6.0}$ for information on precautions and general procedures used in sample collection and $\underline{NFM 6.2}$ for a description of the flowthrough cell used in dissolved-oxygen determination (the spectrophotometric method).

- Chemical, physical, and biological reactions can cause the Eh of water to change significantly within minutes or even seconds after the collection of a sample.
- ▶ Water samples cannot be preserved and stored for the Eh measurement.
- Use equipment that eliminates sample aeration and operate the equipment to meet this goal. If using a flowthrough chamber or cell:
 - -- Use tubing that is impermeable (relatively) to oxygen.
 - -- Channel the sample flow through an airtight cell (closed system) constructed specifically to accommodate redox or ion-specific electrodes, temperature, and other sensors.
 - -- Connections and fittings must be airtight.
 - -- Purge atmospheric oxygen from the sample tubing and associated flow channels before measuring Eh.

Do not use pumping systems in which inert gas contacts and lifts the sample to the surface: the gas could strip gaseous redox species from the water.

Measure Eh in situ with a submersible instrument or use an airtight flowthrough system.

First:

- 1. Record the type of reference-electrode system being used (fig. 6.5-1).
- 2. Check for the correct electrode filling solution. If working in very hot or boiling waters, change the reference electrode filling solution daily.
- 3. Keep the electrode surface brightly polished.

TECHNICAL NOTE: Temperature determines the Eh reference potential for a particular solution and electrode pair, and may affect the reversibility of the redox reactions, the magnitude of the exchange current,

and the stability of the apparent redox potential reading. The observed potential of the system will drift until thermal equilibrium is established. Thermal equilibrium can take longer than 30 minutes but it is essential before beginning the measurements.

Next, measure the Eh and complete the field form (fig.6.5-2):

- 1. Select an in situ or closed-system sampling method. Immerse the electrodes and temperature sensors in the sample water.
 - In situ (or downhole)--Lower the sensors to the depth desired and follow the manufacturer's recommendations.
 - Closed-system flow cell--Check that the connections and sensor grommets do not leak, and that the water being pumped fills the flowthrough cell.
- 2. Allow the sensors to reach thermal equilibrium with the aqueous system being measured and record the time lapsed.
 - It is essential that platinum electrodes be flushed with large volumes of sample water to obtain reproducible values.
 - Record the pH and temperature of the sample water.
- 3. Switch the meter to the millivolt function.
 - Allow the reading to stabilize $(\pm 5 \text{ mV})$.
 - Record the value and temperature (see the technical note that follows step 7, below).
 - Stabilization should occur within 30 minutes.
- 4. Take readings of the sample temperature and potential (in millivolts) every few minutes for the first 15 to 20 minutes.
 - It is best to stop the flow of the sample while the reading is being taken to prevent streaming-potential effects.
 - After 15 to 20 minutes, begin to record the time, temperature, and potential in plus or minus millivolts about every 10 minutes. Continue until 30 minutes have passed from the initial measurement and until the measurements indicate a constant potential.
- 5. After the measurements have been completed for the day, rinse the electrode(s) thoroughly with deionized water.

If field calibration is required for a study,

- a. Place the electrode(s) and other sensors in ZoBell's solution that has been equilibrated to the temperature of the aqueous system to be measured. The electrode(s) must not touch the container, and the solution must cover the reference junction.
- b. Allow the electrode to reach thermal equilibrium (15 to 30 minutes).
- c. Record the potential reading.
- d. Follow steps 5-7 of the equipment test procedure in section 6.5.2.
- 6. Record all data and calculate Eh (see EXAMPLE, (section 6.5.2).

Fill out the Eh data record form for field measurements fig. 6.5-2).

	Eh Data Record		
F	ield Measurements	•	
		Field Eh	Field Eh ¹
1. Temperature and pH of system	n measured: T = _	· · · ·	
	pH = _	· · · · · · · · · · · · · · · · · · ·	·
2. Time to thermal equilibration:			
Me	asurement began at -		
Me	asurement ended at -		
3. Measured potential of water s	ystem (mV):		
4. Reference electrode potential r	mV of ZoBell's		
at sample temperatura:	E _{ref} = -		
5. Calculate sample Eh: emf + E _{rr}	f		
(add step 3 + step 4):	Eh = _	<u> </u>	
6. Field measurements should ag Observations:		nV.	
¹ The second measurement is necessa	ry for quality control.		
Figure 6.5–2. En data reco	rd: field measurem	nents.	

7. Quality control--Repeat the measurement.

TECHNICAL NOTE: The response of the Eh measurement system may be considerably slower than that of the pH system and that response also may be asymmetrical: the time required for stabilization may be longer when moving from an oxidizing to reducing environment or vice versa. If the readings do not stabilize within about 30 minutes, record the potential and its drift; assume a single quantitative value is not possible. If an estimate of an asymptotic final (hypothetical) potential in such a drifting measurement is desired, refer to the method used by Whitfield (1974) and Thorstenson and others (1979).

6.5.3.A INTERFERENCES AND LIMITATIONS

Measurements should not be carried out without an awareness of the interferences and limitations inherent in the method.

- Organic matter and sulfide may cause contamination of the electrode surface, salt bridge, or internal electrolyte, which can cause drift or erratic performance when reference electrodes are used (American Public Health Association and others, 1992).
- Hydrogen sulfide can produce a coating on the platinum electrode that interferes with the measurement if the electrode is left in sulfide-rich water for several hours (Whitfield, 1974; Sato, 1960).
- ► The platinum single and combination redox electrodes may yield unstable readings in solutions containing chromium, uranium, vanadium, or titanium ions and other ions that are stronger reducing agents than hydrogen or platinum (Orion Research Instruction Manual, written commun., 1991).
- ▶ Do not insert redox electrodes into iron-rich waters directly after electrode(s) contact with ZoBell's. An insoluble blue precipitate coats the electrode surface because of an immediate reaction between ferro- and ferricyanide ions in ZoBell's with ferrous and ferric ions in the sample water, causing erratic readings.

Many elements with more than one oxidation state do not exhibit reversible behavior at the platinum electrode surface and some systems will give mixed potentials, depending on the presence of several different couples (Barcelona and others, 1989; Bricker, 1982, p. 59-65; Stumm and Morgan, 1981, p. 490-495; Bricker, 1965, p. 65). Methane, bicarbonate, nitrogen gas, sulfate, and dissolved oxygen generally are not in equilibrium with platinum electrodes (Berner, 1981).

TECHNICAL NOTE: Misconceptions regarding the analogy between Eh (pe) and pH as master variables and limitations on the interpretation of Eh measurements are explained in Hostettler (1984), Lindberg and Runnells (1984), Thorstenson (1984), and Berner (1981). To summarize:

(1) Hydrated electrons do not exist in meaningful concentrations in most aqueous systems--in contrast, pH represents real activities of hydrated protons. Eh may be expressed as pe, the negative logarithm of the electron activity, but conversion to pe offers no advantage when dealing with measured potentials.

(2) Do not assume that redox species coexist in equilibrium. Many situations have been documented in which dissolved oxygen coexists with hydrogen sulfide, methane, and ferrous iron.

- The practicality of Eh measurements is limited to iron in acidic mine waters and sulfide in waters under-going sulfate reduction.
- Other redox species are not sufficiently electroactive to establish an equilibrium potential at the surface of the conducting electrode.

(3) A single redox potential cannot be assigned to a disequilibrium system, nor can it be assigned to a water sample without specifying the particular redox species to which it refers. Different redox elements (iron, manganese, sulfur, selenium, arsenic) tend not to reach overall equilibrium in most natural water systems; therefore, a single Eh measurement generally does not represent the system.

6.5.3.B INTERPRETATION

A rigorous quantitative interpretation of a measurement of Eh requires interactive access to an aqueous speciation code. Exercise caution when interpreting a measured Eh using the Nernst equation. The Nernst equation for the simple half-cell reaction $(M^{I}_{(aq)} = M^{II}_{(aq)} + e)$ is

$Eh = E^{o} + 2.303 RT/nF \log \left(a^{II}_{M(aq)} / a^{I}_{M(aq)}\right)$

where:

R = gas constant;

T = temperature, in degrees kelvin;

n = number of electrons in the half-cell reaction;

F = Faraday constant; and

 $a^{I}_{\mathcal{M}(aq)}$ and $a^{II}_{\mathcal{M}(aq)}$ = thermodynamic activities of the free ions $M^{I}_{(aq)}$ and $M^{II}_{(aq)}$ and not simply the analytical concentrations of total M in oxidation states I and II, respectively.

Measurements of Eh are used to test and evaluate geochemical speciation models, particularly for suboxic and anoxic ground-water systems. Eh data can be useful for gaining insights on the evolution of water chemistry and for estimating the equilibrium behavior of multivalent elements relative to pH for an aqueous system. Eh can delineate qualitatively strong redox gradients; for example, those found in stratified lakes and rivers with an anaerobic zone, in an oxidized surface flow that becomes anaerobic after passing through stagnant organic-rich systems, and in mine-drainage discharges.

 \Rightarrow Section 6.5.4

Return to Section 6.5.2

Preturn to Contents for 6.5--Reduction Oxidation Potential (Electrode Method)

Return to Chapter A6 Contents Page

Return to Field Manual Complete Contents

Return to Water Quality Information Pages

Maintainer: Office of Water Quality Webversion by: Genevieve Comfort Last Modified: 15AUG00 imc

Water Resources--Office of Water Quality

This document is also available in pdf format:

Chapter 6.5.4.pdf

6.5.4 TROUBLESHOOTING

Contact the instrument manufacturer if the suggestions in table 6.5-4 fail to resolve the problem.

- Check the voltage of the batteries.
- ► Always start with good batteries in the instruments and carry spares.

Table 6.5-4. Troubleshooting guide for En measurement [±, plus or minus; mV, millivolts; emi, electromotive force]					
5ymptom	Possible corrective action				
Eh of ZoBell's solution exceeds theoretical by	Check meter operation:				
±5 mV	 Use shorting lead to establish meter reading at zero m¹ 				
Excessive drift	 Check/replace batteries. 				
Erratic performance	• Check against backup m eter.				
Poor response when using peired electodes	Check electrode operation:				
	 Checkthat electrode reference solution level is to the fill hole. 				
	Plug questionable reference electrode into reference electrode jack and enother reference electrode in good working order of the same type into the indicator electrode jack of the meter; immerse electrodes in a potessium chloride solution, record mV, rinse off end immerse electrodes in ZoBell's solution. The two mV readings should be 0±5 mV. If using different elec- trodes (Ag:AgCl and Hg:HgCl ₂), reading should be 44± 5 mV for a good reference electrode.				
	• Polish platinum tip with mild abrasive (crocus cloth, hard eraser, or a 400–600-grit wat/dry Carborundum™ paper), rinse thoroughly with deionized water. Use a Kimwipe™ if these abrasives are not available.				
	 Drain and refill reference electrolyte chamber. 				
	 Disconnect reference electrode. Drain and refill electro- lyte chember with correct filling solution. Wipe off connectors on electrode and meter. Use backup electrode to check the emf. 				
	 Read emf with fresh aliquot of ZoBell's solution; prepare fresh ZoBell's solution if possible. 				
	 Recondition electrode by cleaning with equa regis and renewing filling solution—this is a last report. 				

⇒<u>Section 6.5.5</u>

A<u>Return to Section 6.5.3</u>

☞ Return to Contents for 6.5--Reduction Oxidation Potential (Electrode Method)

Return to Chapter A6 Contents Page

Return to Field Manual Complete Contents

PReturn to Water Quality Information Pages

Maintainer: Office of Water Quality Webversion by: Genevieve Comfort Last Modified: 16JUNE98 ghc

Water Resources--Office of Water Quality

This document is also available in pdf format:

Chapter 6.5.5.pdf

6.5.5 REPORTING

Report the calculated Eh in mV to two significant figures.

Potentials are reported to the nearest 10 mV, along with the temperature at which the measurement was made, the electrode system employed, and the pH at time of measurement.

⇒ Chapter 6.6 Contents

Return to Contents for 6.5--Reduction Oxidation Potential (Electrode Method

Return to Chapter A6 Contents Page

Return to Field Manual Complete Contents

AReturn to Water Quality Information Pages

Maintainer: Office of Water Quality Webversion by: Genevieve Comfort Last Modified: 16JUNE98 ghc http://water.usgs.gov/owq/FieldManual/Chapter6/6.5.2.html

Webversion by: Genevieve Comfort Last Modified: 16JUNE98 ghc

Qualifications for Series 4a Specifications (continued)

1379335

Hydrolab Technical Note 204

- Response time is the time required for a measurement to accomption 95% of a step-change in only that measurement. For instance, if the temperature changed suddenly from 25°C to 35°C, temperature's time response would be the time required for the reading to change to 95% (35-25) + 25= 34.5°C.
- (2) Stability is a multiprobe's ability to read within its accuracy specifications in the same standard used for calibration. Cartain situations can adversely affect stability. For example, a reference electrode soaked for a month in very low Specific Conductance water cannot contantly be expected to produce accurate pH (or Redex or ISE) readings. Similarly, a DO probe covered with active algae is not likely to produce accurate DO readings. The stability specifications are based on an analysis of the sensor electronics and not on direct testing, because of the difficulty in applying such a test to specific field conditions.
- (3) Hydroleb's standard thermistor provides ± 0,15°C accuracy worst case and ± 0,10°C using 95% Certainty (most probable error) method for calculating accuracy. This means that more than 85 out of 100 multiprobes will meet the ± 0,10°C specification.
- (4) The four ranges (0 to 0.1999, 0.2 to 1.5, 1.5 to 15, and 15 to 100 mS/cm) are changed eutomatically (autoranged) to provide the most digits available.
- (5) The 4 digit reactution for Specific Conductance depends on which of the four automatically selected ranges are in use. For instance, a reading of 0.13 mS/cm, would be displayed as .1300; resolution would be tan thousandins of mS/cm. A Specific Conductance of (0.157 mS/cm would be displayed as 10.16; resolution would be to hundredths of mS/cm. If the optional output, pS/cm, is chosen, the resolution for Specific Conductance over 9989 pS/cm will be four digits, with a zero added as the last (fifth) digit.
- (6) The Temperature compensation for Specific Concudence can be disabled sesily if 'raw" Conductivity readings are needed.
- (7) The Selinity accuracy is enhanced when the system's calibrated for Salinity (instead of Specific Conductance) near the expected field values.
- (3) Although the multiprobe will measure the full 0 to 14 unit pH range, it is not recommended that the sensors be exposed to pH extremes outside the 2 to 12 unit range.
- (9) The pH accuracy is valid for waters of Specific Conductance greater than 0.2 mS/cm, when using Hydrolab's standard, rebuildable reference electrode. This accuracy can be ordinarily met in very fresh waters (Specific Conductance less than 0.2 mS/cm) if you use Hydrolab's optional LISREF (low ionic strength) reference electrode and follow very particular maintenance and calibration procedures. The LISREF reference electrode is not refiliable.
- (10) When operated at temperature of calibration and calibrated with turbid free water and a Formazin standard of 75% of range. Typical temperature coefficient is -0.26 NTU/C*.

n an air Chaitean <u>Airtean an Anna Anna Anna A</u>

- (11) Response time is less than ten seconds with avaraging disabled, but requires thirty seconds after power-up. The maximum moving avarage time is 60 seconds for a worst case response time of 90 seconds from power-up.
- (12) Turbidity measurement is divided into two ranges: 0 to 100 and 100 to 1000 NTU. Readings are more accurate in the range in which calibration is made, as shown in the chart below. The chart also shows the readings are more accurate when made at the temperature of calibration.

· · · · · · · · · · · · · · · · · · ·	% range on cal range	% range on non-cel range
at cal tamp	± 5	±10
nol at cal temp	± 10	±15

- (13) The Redox accuracy refers to true electrode voltage. Actual readings are subject to slow electrode equilibration times and uncertainty in measurement theory and calibration. A typical as-measured accuracy might be ± 50mV. Accuracy is aided in very fresh waters (Specific Conductance is less than 0.2 mS/cm) by Hydrolab's optional LISREF reference electrode (see footnote 9).
- (14) A transfer standard is a calibration solution or standard graded by another measurement method, such as chemical litration (e.g. Winkler). In the case of Redox, a transfer standard reight be a solution measured by a trustec laboratory pH-mV metar. For many purposes, it is not necessary to calibrate Redox at all.
- (15) The time required for a Redox sensor to respend to a step-change in Redox is highly variable and depends on the condition of the surface of the platinum electrode and on the direction of the step-change. Because response time is little affected by non-Redox sensor items, such as electronic design or the effects of other sensors, the response time of Hydrolab's Redox sensor is virtually the same as that of other Redox-measurement instruments.

Typical Accuracy, Ammonium: ± 5% of reading, or ± 2 mg/L-N, whichever is greater. Minimum Accuracy: ± 10% of reading, or ± 2 mg/L-N, whichever is greater. Both accuracy spacifications are at temperature of calibration with no interfering ions, interfering ions artificially increase the ammonium reading as follows:

intering	atering 1 mg/L-N			
Ion	Interforence			
K+	13 mg/L			
Na+	1,300 mg/L			

Updated 9/2001

(16)

711:UY

H.I.

2001

10

(1)

Page 3

Qualifications for Series 4a Specifications (continued)

lidaan dha shiriya

14.02002

Hydrolab Technical Note 204

Typical Accuracy, Ammonia: ± 27% of reading, or ± 2 mg/L-N, whichever is greater. Minimum Accuracy: ± 70% of reading, or ± 2 mg/L-N, whichever is greater. Ammonia is calculated from the sensor's ammonium output according to pH, and the Inherent uncertainty in pH is 0.2 units, which weans an uncertainty in semiconiant of ± 60% when mathematically converted from ammonia. Both accuracy specifications are at temperature of calibration with no interfading ions and pH less than 10. Interfeding ions artificially increase the ammonium reading and hence the ammonia reading.

132952

(17) Typical Accuracy, Nitrate ± 6% of reading, or ± 2 mg/L-N, whichever is greater. Minimum Accuracy: ± 10% of reading, or ± 2 mg/L-N, whichever is greater. Both accuracy specifications are at temperature of calibration with no interfering ions, interfering ions can artificially increase the nitrate reading as follows:

Interforing	1 mg/L-N
Jon	Interference
CIQ,	0.0071 mg/L
I-	0.45 mg/L
CN'	2.6 mg/L
Br	39,7 mg/L
NO ₂	23 mg/L
HS	23 mg/L
HCO ₃	433 mg/L
CO ₃ ⁴	852 mg/L
CI-	765 mg/L

1.19

(18) Typical Accuracy, Chloride ± 5% of reading, or ± 2mg/L, whichever is greater. Minimum Accuracy: ± 10% of reading or ± 2 mg/L, whichever is greater. Both socuracy specifications are at temperature of calibration with no interfering ions and pH tess than 12.4. Interfering ions can artificially increase the chloride reading as follows:

interfering	f mg/L
Ion	interference
CN	1,5 x 10-6 mg/L
ſ	1,8 x 10-6 mg/L
S ⁴	9,0 x 10-6 mg/L
Bŕ	6,7 x 10-2 mg/L

(19) Chloride resolution varies with the magnitude of the reading as follows:

Reading	Resolution
0.00 to 99.99 mg/L	0.01 mg/L
100.0 to 989.8 mg/L	0.1 mg/L
1.000 to 18.000 mg/L	1 mg/L

(20) The 95% response change to a change in total dissolved gas pressure lass than 160 seconds at 11°C.

(21) Typical accuracy is ± %5 of reading, or ± 1 uncl s⁻¹ m⁴, whichever is greater. Minimum accuracy: ± 19% of reading, or ± 2 uncl s⁻¹ m⁴, whichever is greater. Manufacture: recommends factory sensor recalibration at least one every two years.

(22) It is important to note that the fluorescent yield observed in the natural environment can deviate videly over varying conditions. Given this, the Rhodamine standard should not be directly compared to chlorophyd. The standard is used in tuning of fluorometers as a reference, not as a cationalism. We encourage our users to perform filed calibrations in the locale of their sampling if they are interested in more than relative trends.

The 10m Depth accuracy is the 95% Certainty (most probable error) accuracy, based on the worst-case errors such as drift, temperature compensation, till error, etc. The 10m Depth transducer is atmospherically vented to eliminate the very large errors possible from barometric pressure shifts caused, for instance, by changing weather).

(23)

Qualifications for Series 4a Specifications (continued)

12.2337

Hydrolab Technical Note 204

(24) The Depth readings are comparisonal for Selinity (that is, water density) so that readings are accurate whether made in fresh or selit waters.

(25) The 25m, 100m, and 200m Depth accuracy are the 95% Certainty (most probable error) accuracy, based on the worst-case errors such as drift, temperature compensation, bit error, etc. This accuracy requires that the user employ atmospheric correction if changes in barometric pressure are to be considered. The accuracy is much better in situations were temperature changes are small and changes in Depth, rather than the exact Depth, are of primary interest.

(26) Salinity is calculated from conductivity and temperature based on USGS WS Paper 2511 or Section 2520 of Standard Methods for the Examination of Water and Wastewater. The Standard Methods function is also commonly referred to as the Practicel Salinity Scale or UNESCO Method.

Head Office: Hydrolab Corporation 8700 Cameron Rd. #100 Austin, TX 78764 USA Phone: (800) 949-3766 or (512) 832-8832 Fax: (512) 832-8838 Email: <u>sates@hydrolab.pom http://www.hydrolab.pom</u>

1949-yı

in the interest of improving and updeting its equipment, Hydrolab reserves the right to after specifications to equipment at any time. Hydrolab Com@ 2001

UL/ZUU.

11

HYDROLAB

2

1992.00640

Tech Note 204

3166

Parameter Specifications

PARAMETER	RANGE	ACCURACY	RESOLUTION	SENSOR	COMPENSATIONS	CALIBRATION	RESPONSE TIME ¹	STABILITY	OUTPUT OPTIONS
TEMPERATURE	-5 to 50°C	±0.10°C	0.01°C	the mistor	none required	batispes encon	< i minute	three years	*C, *F, or %
SPECIFIC CONDUCTANCE	0.0000 to 0.1999 mS/cm 0.200 to 1.500 mS/cm 1.45 to 15.00 mS/cm 14.5 to 100.0 mS/cm (autoranged) ⁶	± 1% of reading ± 1 count ± 1µS/cm	4 digits ^e	0.25" x 1" oval bore with four graphite electrodes	automatic to 25°C ⁴	KCI or other standards	< 10 seconds	six months	mS/cm, µS/cm, conductivity, TDS, or resistivity
SALINITY	0 to 70 PSS'	± 1% of reading ±0.01 PSS	0.01 PSS	calculated from specific conductance	none required	Uses calibration from sp. cond. Or calibrate directly with selladiy standards	< 10 seconds	one month	PSS
DISSOLVED OXYGEN	0 to 50 mg/L	± 0.2 mg/L (≤20) ± 0.6 mg/L (>20)	0.01 mg/L	rabuitdable polarographic; 1 mš. Tefion ¹⁴ membrane	automatic for temperature and salinity	water-saturated air, Winkler, or air- saturated water	<1 minute	one month	mo/L, % saturation, or mg/L without satinity correction
рH	0 to 14 urits ⁶	± 0,2 units ⁹	0.01 unil	glass pH; rebuildabjs or low lonic strength reference eletrode	automatic for temperature	pH 7 buffer, plus one slope buffer	< 1 minute	one month	pH uritis
SHUTTERED TURBIDITY (Datasonde 4s only)	0 to 100 NTU or 0 to 1000 NTU (user selectable)	± 2.6% of range ¹⁰	0.1 NTU 1 NTU	ISO 7027 compliant nephelomater with foulling resistant simitar (US Patent #8,111,249)	eutomatic ambient light rejection	dilutions of Formazin or AEPA- 1 polymer beads	< 10 seconds"	cine manual	NTU or volis
NON- SHUTTERED TURBIDITY (Datasonde 4s and Minisonde 4a)	0 to 100 NTU 100 to 1000 NTU (sutoranged)	$\pm 5\%$ of range ¹²	0.1 NTU 1 NTU 	ISO 7027-based nephelometer	must be operated at depth > int or shielded from sunlight	dilutions of Formazin or AEPA- 1 polymer beads	<1 minute	one month	NTU
REDOX	-999 to 999 mV	± 20 mV [™]	1 mV	Pleiectrode	none required	quinhydroae, Zobeli, Light's, or transfers	varies16	rthom ano	۳۷
Ammonium Ammonia	0 to 100 mg/L-N	greater of ± 6% of reading or ± 2 mg/L-N ³⁴	0.01 mg/L-N	ion-specific electrode	activity coefficient computed from specific conductance; and emmonia derived from ammonium temperature, pH, and specific conductance	2-, 3-, or 4-point calibration with Hydrolab or Uses- produced standards	< 1 minute	one month	mg/L-N, mV, or mg/L-N of total NH*s

10/24/2001 WED 16:02 FAX

Updated 9/2001

Parameter Specifications – Series 4a DataSonde® 4a & MiniSonde® 4a & Surveyor® 4a Display (Continued from Page 1)

Hydrolab Technical Note 204

and an and a second second second

and the state of the

PARAMETER	RANGE	ACCURACY	RESOLUTION	SENSOR	COMPENSATIONS	CALIBRATION	RESPONSE TIME ¹	STABILITY	OUTPUT OPTIONS
NITRATE	0 to 100 mg/L-N	greater of ± 6% of reading or ± 2 mg/L-N ¹⁷	0.01 mg/L-N	ion-spacific siectrode	activity coefficient computed from spacific conductance	2-, 3-, or 4-point calibration with Hydrolab or uses- produced standards	< 1 ແພນເອ	one month	mg/L-N or mV
Chloride	0.5 to 18,000 mg/L	graater of ± 6% of reading or ± 2 mg/L-N ¹¹	4 digits ¹⁵	ion-spackic electroda	activity coefficient computed from specific conductance	2-, 3-, or 4-point catibration with Hydrotab or user- produced standards	< 1 minute	> 1 year with occasional polish	mg/L or mV
TOTAL DISSOLVED GAS	400 to 1300 mmHg (max immension depth; 30 meters)	± 0.1% of span	0.1 mmHg	membrane-covered pressure traneducar	none required	setin air	< 3 minutes ²⁰	one menth	mmHg,mV, or PSI
AMBIENT LIGHT (PAR)	0 to 10,000 1 µmol s ⁻¹ m ⁻²	± 5% of reading or ± µmoi s ⁴ m ²⁽²¹⁾	1 µmol a''m ^a	photovoltzic cett	rejection of amblent light outside the 400- 700 nm bandwidth	none required	< 10 seconds	two years ²¹	1 µmol s°1m³
CHLOROPHYLL	0.03 to 150 ug/L	± 3% of reading ± 0.1 µg/L ²¹	0.1 µg/L	fluorametric	none required	dilutions of rhodamine (or secondary catibration cube) with user correlation to field samples	< 10 seconds	ose mosth	µg/L or volta
DEPTH/0-10M vented	0 W 01 m	s 0.03 m st	0.001 m	strain-gage transducer	automatic for salinity ¹⁴	set zero in air	< 10 seconds	ons month	m, fL or PSI
DEPTH/025M non-vented	0 to 25 m	± 0.08 m ¹⁵	0,01 m	strain-gage transducar	automatic for salinity ²⁴	sel zoro in eir	< 10 seconds	one month	m, ît, or PSI
DEPTH/0-100M	0 to 100 m	± 0,3 m ²⁴	0,1 m	etrain-gage Iransducer	automatic for selinity ^{at}	set zero in इस	< 10 seconds	one month	m, ft, or PSi
DEPTH/0-200M	0 to 200 m	± 0.8 m ²⁵	0,1 m	strain-gage iraneducer	automatic for satinity ²⁴	set ze:o in air	< 10 seconda	one month	m, it, or PSI
BAROMETRIC PRESSURE	500 to 250 mmHg	± 10 mmHg	0.1 mmHg	strain-gage transducer	none required	set in air	< 10 seconds	six months	mmHg, inHg, kPA, mbar, Abm, or PS1

Note: These specifications apply over the operating temperature range of -5 to 50°C (non-freezing), and over the operating voltage range of 8 to 15VDC, for well maintained sensors in clean, unchanging waters. There are many situations, such as biofouling, that will negate extrapolation of these specifications to field conditions.

Updated 9/2001

Page 2